
Virtualization Without Direct Execution or Jitting:

Designing a Portable Virtual Machine Infrastructure

Darek Mihocka

Emulators

darekm@emulators.com

Stanislav Shwartsman

Intel Corp.

stanislav.shwartsman@intel.com

Abstract

A recent trend in x86 virtualization products from

Microsoft, VMware, and XenSource has been the reliance

on hardware virtualization features found in current 64-bit

microprocessors. Hardware virtualization allows for direct

execution of guest code and potentially simplifies the

implementation of a Virtual Machine Monitor (or

"hypervisor")
1
. Until recently, hypervisors on the PC

platform have relied on a variety of techniques ranging

from the slow but simple approach of pure interpretation,

the memory intensive approach of dynamic recompilation

of guest code into translated code cache, to a hardware

assisted technique known as "ring compression" which

relies on the host MMU for hardware memory protection.

These techniques traditionally either deliver poor

performance
2
, or are not portable. This makes most

virtualization products unsuitable for use on cell phones, on

ultra-mobile notebooks such as ASUS EEE or OLPC

XO, on game consoles such as Xbox 360 or Sony

Playstation 3, or on older Windows 98/2000/XP class PCs.

This paper describes ongoing research into the design of

portable virtual machines which can be written in C or C++,

have reasonable performance characteristics, could be

hosted on PowerPC, ARM, and legacy x86 based systems,

and provide practical backward compatibility and security

features not possible with hardware based virtualization.

Keywords

Bochs, Emulation, Gemulator, TLB, Trace Cache,

Virtualization

1.0 Introduction

At its core, a virtual machine is an indirection engine which

intercepts code and data accesses of a sandboxed “guest”

application or operating system and remaps them to code

sequences and data accesses on a “host” system. Guest code

is remapped to functionally identical code on the host, using

binary translation or sandboxed direct execution. Guest data

accesses are remapped to host memory and checked for

access privilege rights, using software or hardware

supported address translation.

When a guest virtual machine and host share a common

instruction set architecture (ISA) and memory model, this is

commonly referred to as “virtualization”. VMware Fusion
3

for running Windows applications inside of Mac OS X,

Microsoft’s Hyper-V
4
 feature in Windows Server 2008,

and Xen
5
 are examples of virtualization products. These

virtual machines give the illusion of full-speed direct

execution of native guest code. However, the code and data

accesses in the guest are strictly monitored and controlled

by the host’s memory management hardware. Any attempt

to access a memory address not permitted to the guest

results in an exception, typically an access violation page

fault or a “VM exit event”, which hands control over to the

hypervisor on the host. The faulting instruction is then

emulated and either aborted, re-executed, or skipped over.

This technique of virtualization is also known as “trap-and-

emulate” since certain guest instructions must be emulated

instead of executed directly in order to maintain the

sandbox.
6
.

Virtualization products need to be fast since their goal is to

provide hardware-assisted isolation with minimal runtime

overhead, and therefore generally use very specific

assembly language optimizations and hardware features of

a given host architecture.

A more general class of virtual machine is able to handle

guest architectures which differ from the host architecture

by emulating each and every guest instruction. Using some

form of binary translation, either bytecode interpretation or

dynamic recompilation or both, such virtual machines are

able to work around differences in ISA, memory models,

endianness, and other differentiating factors that prevent

direct execution.

Emulation techniques generally have a noticeable

slowdown compared to virtualization, but have benefits

such as being able to easily capture traces of the guest code

mailto:stanislav.shwartsman@intel.com

or inject instrumentation. Dynamic instrumentation

frameworks such as Intel’s Pin
7
 and PinOS

8
, Microsoft’s

Nirvana
9
, PTLsim

10
, and DynamoRIO

11
 programmatically

intercept guest code and data accesses, allowing for the

implementation of reverse execution debugging and

performance analysis tools. These frameworks are powerful

but can incur orders of magnitude slowdown due to the

guest-to-host context switching on each and every guest

instruction.

Emulation products also end up getting customized in host-

specific ways for performance at the cost of portability.

Apple’s original 68020 emulator for PowerPC based Macs
12

 and their more recent Rosetta engine in Mac OS X which

run PowerPC code on x86
13

 are examples of much targeted

pairings of guest and host architectures in an emulator.

As virtualization products increasingly rely on hardware-

assisted acceleration for very specialized usage scenarios,

their value diminishes for use on legacy and low-end PC

systems, for use on new consumer electronics platforms

such as game consoles and cell phones, and for

instrumentation and analysis scenarios. As new devices

appear, time-to-market may be reduced by avoiding such

one-off emulation products that are optimized for a

particular guest-host pairing.

1.1 Overview of a Portable Virtual Machine

Infrastructure

For many use cases of virtualization we believe that it is a

fundamental design flaw to merely target the maximization

of best-case performance above all else, as has been the

recent trend. Such an approach not only results in hardware-

specific implementations which lock customers into limited

hardware choices, but the potentially poor worst-case

performance may result in unsatisfactory overall

performance
14

.

We are pursuing a virtual machine design that delivers

fast CPU emulation performance but where portability

and versatility are more important than simply

maximizing peak performance.

We tackled numerous design issues, including:

 Maintaining portability across legacy x86 and non-

x86 host systems, and thus eliminating the use of

host-dependent optimizations,

 Bounding the memory overhead of a hypervisor to

allow running in memory constrained

environments such as cell phones and game

consoles,

 Bounding worst-case performance, and thus

allowing for efficient tracing and run-time

analysis,

 Efficiently dispatching guest instructions on the

host,

 Efficiently mapping guest memory to the host,

and,

 Exploring simple and lightweight hardware

acceleration alternatives.

Our research on two different virtual machines – the Bochs

portable PC emulator which simulates both 32-bit x86 and

x86-64 architectures, and the Gemulator
15

 Atari ST and

Apple Macintosh 68040 emulator on Windows – shows that

in both cases it is possible to achieve full system guest

simulation speeds in excess of 100 MIPS (millions of

instructions per second) using purely interpreted execution

which does not rely on hardware MMU capabilities or even

on dynamic recompilation. This work is still in progress,

and we believe that further performance improvements are

possible using interpreted execution to where a portable

virtual machine running on a modern Intel Core 2 or

PowerPC system could achieve performance levels equal to

what less than ten years ago would have been a top of the

line Intel Pentium III based desktop.

A portable implementation offers other benefits over

vendor specific implementations, such as deterministic

execution, i.e. the ability to take a saved state of a virtual

machine and re-execute the guest code with deterministic

results regardless of the host. For example, it would be

highly undesirable for a virtual machine to suddenly behave

differently simply because the user chose to upgrade his

host hardware.

Portability suggests that a virtual machine’s hypervisor

should be written in a high level language such as C or

C++. A portable hypervisor needs to support differences in

endianness between guest and host, and even differences in

register width and address space sizes between guest and

host should not be blocking issues. An implementation

based on a high level language must be careful to try to

maintain a bounded memory footprint, which is better

suited for mobile and embedded devices.

Maintaining portability and bounding the memory footprint

led to the realization that dynamic recompilation (also

known as just-in-time compilation or “jitting”) may not

deliver beneficial speed gains over a purely interpreted

approach. This is due to various factors, including the very

long latencies incurred on today’s microprocessors for

executing freshly jitted code, the greater code cache and L2

cache pressure which jitting produces, and the greater cost

of detecting and properly handling self-modifying code in

the guest. Our approach therefore does not rely on jitting as

its primary execution mechanism.

Supporting the purely-interpreted argument is an easily

overlooked aspect of the Intel Core and Core 2

architectures: the stunning efficiency with which these

processors execute interpreted code. In benchmarks first

conducted in 2006 on similar Windows machines, we found

that a 2.66 GHz Intel Core 2 based system will consistently

deliver two to three times the performance of a 2.66 GHz

Intel Pentium 4 based system when running interpretation

based virtual machines such as SoftMac
16

. Similar results

have been seen with Gemulator, Bochs, and other

interpreters. In one hardware generation on Intel

microprocessors, interpreted virtual machines make a lot

more sense.

Another important design goal is to provide guest

instrumentation functionality similar to Pin and Nirvana,

but with less of a performance penalty when such

instrumentation is active. This requires that the amount of

context switching involved between guest state and host

state be kept to a minimum, which once again points the

design at an interpreted approach. Such a low-overhead

instrumentation mechanism opens the possibilities to

performing security checks and analysis on the guest code

as it is running in a way that is less intrusive than trying to

inject it into the guest machine itself. Imagine a virus

detection or hot-patching mechanism that is built into the

hypervisor which then protects otherwise vulnerable guest

code. Such a proof-of-concept has already been

demonstrated at Microsoft using a Nirvana based approach

called Vigilante
17

. Most direct execution based hypervisors

are not capable of this feat today.

Assumptions taken for granted by virtual machine designs

of the past need to be re-evaluated for use on today’s CPU

designs. For example, with the popularity of low power

portable devices one should not design a virtual machine

that assumes that hardware FPU (floating point unit) is

present, or even that a hardware memory management is

available.

Recent research from Microsoft’s Singularity project
18

shows that software-based memory translation and isolation

is an efficient means to avoid costly hardware context

switches. We will demonstrate a software-only memory

translation mechanism which efficiently performs guest-to-

host memory translation, enforces access privilege checks,

detects and deals with self-modifying code, and performs

byte swapping between guest and host as necessary.

Finally, we will identify those aspects of current micro-

architectures which impede efficient virtual machine

implementation and propose simple x86 ISA extensions

which could provide lightweight hardware-assisted

acceleration to an interpreted virtual machine.

In the long term such ISA extensions, combined with a

BIOS-resident virtual machine, could allow future x86

microprocessor implementations to completely remove not

only hardware related to 16-bit legacy support, but also

hardware related to segmentation, paging, heavyweight

virtualization, and rarely used x86 instructions. This would

reduce die sizes and simplify the hardware verification.

Much as was the approach of Transmeta in the late 1990’s,

the purpose of the microprocessor becomes that of being an

efficient host for virtual machines
19

.

1.2 Overview of This Paper

The premise of this paper is that an efficient and portable

virtual machine can be developed using a high-level

language that uses purely interpreted techniques. To show

this we looked at two very different real-world virtual

machines - Gemulator and Bochs - which were

independently developed since the 1990s to emulate 68040

and x86 guest systems respectively. Since these emulators

are both interpretation based and are still actively

maintained by each of the authors of this paper, they served

as excellent test cases to see if similar optimization and

design techniques could be applied to both.

Section 2 discusses the design of Gemulator and looks at

several past and present techniques used to implement its

68040 ISA interpreter. Gemulator was originally developed

almost entirely in x86 assembly code that was very x86

MS-DOS and x86 Windows specific and not portable even

to a 64-bit Windows platform.

Section 3 discusses the design of Bochs, and some of the

many optimization and portability techniques used for its

Bochs x86 interpreter. The work on Bochs focused on

improving the performance of its existing portable C++

code as well as eliminating pieces of non-portable assembly

code in an efficient manner.

Based on the common techniques that resulted from the

work on both Gemulator and Bochs and the common

problems encountered in both – guest-to-host address

translation and guest flags emulation - Section 4 proposes

simple ISA hardware extensions which we feel could aid

the performance of any arbitrary interpreter based virtual

machine.

2.0 Gemulator

Gemulator is an MS-DOS and Windows hosted emulator

which runs Atari 800, Atari ST, and classic 680x0 Apple

Macintosh software. The beginnings of Gemulator date

back to 1987 as a tutorial on assembly language and

emulation in the Atari magazine ST-LOG
20

. In 1991,

emulation of the Motorola MC68000 microprocessor and

the Atari ST chipset was added, and in 1997 a native 32-bit

Windows version of Gemulator was developed which

eventually added support for a 68040 guest running Mac

OS 8.1 in a release called “SoftMac”. Each release of

Gemulator was based around a 68000/68040 bytecode

interpreter written in 80386 assembly language and which

was laboriously retuned every few years for 486, Pentium

Pro “P6”, and Pentium 4 “Netburst” cores.

In the summer of 2007 work began to start converting the

Gemulator code to C for eventually hosting on both 32-bit

and 64-bit host machines. Because of the endian difference

between 68000/68040 and 80386 architectures, it was a

goal to keep the new C code as byte agnostic as possible.

And of course, the conversion from 80386 assembly

language to C should incur as little performance penalty as

possible.

The work so far on Gemulator 9.0 has focused on

converting the guest data memory access logic to portable

code, and examining the pros and cons of various guest-to-

host address translation techniques which have been used

over the years and selecting the one that best balances

efficiency and portability.

2.1 Byte Swapping on the Intel 80386

A little-endian architecture such as Intel 80386 stores the

least significant byte first, while a big-endian architecture

such as Motorola 68000 stores the most significant byte

first. Byte values, such as ASCII text characters, are stored

identically, so an array of bytes, or a text string is stored in

memory the same regardless of endianness.

Since the 80386 did not support a BSWAP instruction, the

technique in Gemulator was to treat all of guest memory

address space - all 16 megabytes of it for 68000 guests - as

one giant integer stored in reverse order. Whereas a 68000

stores memory addresses G, G+1, G+2, etc. in ascending

order, Gemulator maps guest address G to host address H,

G+1 maps to H-1, G+2 maps to H-2, etc. G + H is

constant, such that G = K – H, and H = K – G.

Multi-byte data types, such as a 32-bit integer can be

accessed directly from guest space by applying a small

adjustment to account for the size of the data access. For

example, to read a 32-bit integer from guest address 100,

calculate the guest address corresponding to the last byte of

that access before negating, so in this case guest address

100 + sizeof(int) – 1 = guest address 103. The memory read

*(int *)&K[-103] correctly returns the guest data.

The early-1990’s releases of Gemulator were hosted on

MS-DOS and on Windows 3.1, and thus did not have the

benefit of Win32 or Linux style memory protection and

mapping APIs. As such these interpreters also bounds

checked each negated guest offset such that only guest

RAM accesses (usually guest addresses 0 through 4

megabytes) used the direct access, while all other accesses,

including to guest ROM space, video frame buffer RAM,

and memory mapped I/O, took a slower path through a

hardware emulation handler.

Instrumentation showed that only about 1 in 1000 memory

accesses on average failed the bounds check, allowing

roughly 99.9% of guest memory accesses to use the “adjust-

and-negate” bounds checking scheme, and this allowed a 33

MHz 80386 based PC to efficiently emulate close to the full

speed of the original 8 MHz 68000 Atari ST and Apple

Macintosh computers.

2.2 Page Table using XOR Translation

A different technique must be used when mapping the

entire 32-bit 4-gigabyte address space of the 68040 to the

smaller than 2-gigabyte address of a Windows application.

The answer relies on the observation that subtracting an

integer value from 0xFFFFFFFF gives the same result as

XOR-ing that same value to 0xFFFFFFFF. For example:

 0xFFFFFFFF – 0x12345678 = 0xEDCBA987
 0xFFFFFFFF XOR 0x12345678 = 0xEDCBA987

This observation allows for portions of the guest address

space to be mapped to the host in power-of-2 sized power-

of-2-aligned blocks. The XOR operation, instead of a

subtraction, is used to perform the byte-swapping address

translation. Every byte within each such block will have a

unique XOR constant such that the H = K –G property is

maintained.

For example, mapping 256 megabytes of Macintosh RAM

from guest address 0x00000000..0x0FFFFFFF to a 256-

megabyte aligned host block allocated at address

0x30000000 requires that the XOR constant be

0x3FFFFFFF, which is derived taking either the XOR of

the address of that host block and the last byte of the guest

range (0x30000000 XOR 0x0FFFFFFF) or the first address

of the guest range and the last byte of the allocated host

range (0x00000000 XOR 0x3FFFFFFF). Guest address

0x00012345 thus maps to host address 0x3FFFFFFF –

0x00012345 = 0x3FFEDCBA for this particular allocation.

To reduce fragmentation, Gemulator starts with the largest

guest block to map and then allocates progressively smaller

blocks, the order usually being guest RAM, then guest

ROM, then guest video frame buffer. The algorithm used is

as follows:

 for each of the RAM ROM and video guest address ranges

 {

 calculate the size of that memory range rounded up to next power of 2

 for each megabyte-sized range of Windows host address space

 {

 calculate the XOR constant for the first and last byte of the block

 if the two XOR constants are identical

 {

 call VirtualAlloc() to request that specific host address range

 if successful record the address and break out of loop;

 }

 }

 }

Listing 2.1: Pseudo code of Gemulator’s allocator

This algorithm scans for host free blocks a megabyte at a

time because it turns out the power-of-2 alignment need not

match the block size. This helps to find large unused blocks

of host address space when memory fragmentation is

present.

For example, a gigabyte of Macintosh address space

0x00000000 through 0x3FFFFFFF can map to Windows

host space 0x20000000 though 0x5FFFFFFF because there

exists a consistent XOR constant:

 0x5FFFFFFF XOR 0x00000000 = 0x5FFFFFFF

 0x20000000 XOR 0x3FFFFFFF = 0x5FFFFFFF

This XOR-based translation is endian agnostic. When host

and guest are of the same endianness, the XOR constant

will have zeroes in its lower bits. When the host and guest

are of opposite endianness, as is the case with 68040 and

x86, the XOR constant has its lower bits set. How many

bits are set or cleared depends on the page size granularity

of mapping.

A granularity of 64K was decided upon based on the fact

that the smallest Apple Macintosh ROM is 64K in size.

Mapping 4 gigabytes of guest address space at 64K

granularity generates 4GB/64K = 65536 different guest

address ranges. A 65536-entry software page table is used,

and the original address negation and bounds check from

before is now a traditional table lookup which uses XOR to

convert the input guest address in EBP to a host address in

EDI::

; Convert 68000 address to host address in EDI

; Sign flag is SET if EA did not map.

 mov edi,ebp

 shr ebp,16

 xor edi,dword ptr[pagetbl+ebp*4]

Listing 2.2: Guest-to-host mapping using flat page table

For unmappable guest addresses ranges such as memory

mapped I/O, the XOR constant for that range is selected

such that the resulting value in EDI maps to above

0x80000000. This can now be checked with an explicit JS

(jump signed) conditional branch to the hardware emulation

handler, or by the resulting access violation page fault

which invokes the same hardware emulation handler via a

trap-and-emulate.

This design suffers from a non-portable flaw – it assumes

that 32-bit user mode addresses on Windows do not exceed

address 0x80000000, an assumption that is outright invalid

on 64-bit Windows and other operating systems.

The code also does not check for misaligned accesses or

accesses across a page boundary, which prevents further

sub-allocation of the guest address space into smaller

regions. Reducing the granularity of the mapping also

inversely grows the size of the lookup table. Using 4K

mapping granularity for example requires 4GB/4K =

1048576 entries consuming 4 megabytes of host memory.

2.3 Fine-Grained Guest TLB

The approach now used by Gemulator 9 combines the two

methods – range check using a lookup table of only 2048

entries - effectively implementing a software-based TLB

for guest addresses. Each table entry still spans a specific

guest address range but now holds two values: the XOR

translation value for that range, and the corresponding base

guest address of the mapped range. This code sequence is

used to translate for a guest write access of a 16-bit integer

using 128-byte granularity:

 mov edx,ebp

 shr edx,bitsSpan ; bitsSpan = 7

 and edx,dwIndexMask ; dwIndexMask = 2047

 mov ecx,ebp ; guest address

 add ecx,cb-1 ; high address of access

 ; XOR to compare with the cached address

 xor ecx,dword ptr [memtlbRW+edx*8]

 ; prefetch translation XOR value

 mov eax,dword ptr [memtlbRW+edx*8+4]

 test ecx,dwBaseMask

 jne emulate ; if no match, go emulate

 xor eax,ebp ; otherwise translate

Listing 2.3: Guest-to-host mapping using a software TLB

The first XOR operation takes the highest address of the

access and compares it to the base of the address range

translated by that entry. When the two numbers are in

range, all but a few lower bits of the result will be zero. The

TEST instruction is used to mask out the irrelevant low bits

and check that the high bits did match. If the result is non-

zero, indicating a TLB miss or a cross-block access, the

JNE branch is taken to the slow emulation path. The second

XOR performs the translation as in the page table scheme.

Various block translation granularities and TLB sizes were

tested for performance and hit rates. The traditional 4K

granularity was tried and then reduced by factors of two.

Instrumentation counts showed that hit rates remained good

for smaller granularities even of 128 bytes, 64 bytes, and 32

bytes, giving the fine grained TLB mechanism between

96% and 99% data access hit rate for a mixed set of Atari

ST and Mac OS 8.1 test runs.

The key to hit rate is not in the size of the translation

granularity, since data access patterns tend to be scattered,

but rather the key is to have enough entries in the TLB table

to handle the scattering of guest memory accesses. A value

of at least 512 entries was found to provide acceptable

performance, with 2048 entries giving the best hit rates.

Beyond 2048 entries, performance improvement for the

Mac and Atari ST workloads was negligible and merely

consumed extra host memory.

It was found that certain large memory copy benchmarks

did poorly with this scheme. This was due to two factors:

 64K aliasing of source and destination addresses,

and,

 Frequent TLB misses for sequential accesses in

guest memory space.

The 64K aliasing problem occurs because a direct-mapped

table of 2048 entries spanning 32-byte guest address ranges

wraps around every 64K of guest address space. The 32-

byte granularity also means that for sequential accesses,

every 8
th

 32-bit access will “miss”. For these two reasons, a

block granularity of 128 bytes is used so as to increase the

aliasing interval to 256K.

Also to better address aliasing, three translation tables are

used – a TLB for write and read-modify-write guess

accesses, a TLB for read-only guest accesses, and a TLB

for code translation and dispatch. This allows guest code to

execute a block memory copy without suffer from aliasing

between the program counter, the source of the copy, or the

destination of the copy.

The code TLB is kept at 32-byte granularity and contains

extra entries holding a dispatch address for each of the 32

addresses in the range. When a code TLB entry is

populated, the 32 dispatch addresses are initialized to point

to a stub function, similar to how jitting schemes work.

When an address is dispatched, the stub function calculates

the true address of the handlers and updates the entry in the

table.

To handle self-modifying code, when a code TLB entry is

first populated, the corresponding entry (if present) is

flushed from the write TLB. Similarly, when a write TLB

entry misses, it flushes six code TLB entries – the four

entries corresponding to the 128-byte data range covered by

the write TLB entry, and one code “guard block” on either

side are flushed. This serves two purposes:

 To ensure that an address range of guest memory

is never cached as both writable data and as

executable code, such that writes to code space are

always noted by the virtual machine, and,

 To permit contiguous code TLB blocks to flow

into each other, eliminating the need for an address

check on each guest instruction dispatch.

Keeping code block granularity small along with relatively

small data granularity means that code execution and data

writes can be made to the same 4K page of guest memory

with less chance of false detection of self-modifying code

and eviction of TLB entries as can happen when using the

standard 4K page granularity. Legacy 68000 code is known

to place writeable data near code, as well as using back-

patching and other self-modification to achieve better

performance.

This three-TLB approach gives the best bounded behavior

of any of the previous Gemulator implementations. Unlike

the original MS-DOS implementation, guest ROM and

video accesses are not penalized for failing a bounds check.

Unlike the previous Windows implementations, all guest

memory accesses are verified in software and require no

“trap-and-emulate” fault handler.

The total host-side memory footprint of the three translation

tables is:

 2048 * 8 bytes = 16K for write TLB

 2048 * 8 bytes = 16K for read TLB

 2048 * 8 bytes = 16K for code TLB

 65536*4 = 256K for code dispatch entries

This results in an overall memory footprint of just over 300

kilobytes for all of the data structures relating to address

translation and cached instruction dispatch.

For portability to non-x86 host platforms, the 10-instruction

assembly language sequence was converted to this inlined

C function to perform the TLB lookup, while the actual

memory dereference occurs at the call site within each

guest memory write accessor:

void * pvGuestLogicalWrite(

 ULONG addr, unsigned cb)

{

 ULONG ispan;

 ispan = (((addr + cb - 1) >> bitsSpan)

 & dwIndexMask);

 void *p;

 p = ((addr ^ vpregs->memtlbRW[ispan*2+1])

 - (cb - 1));

 if (0 == (dwBaseMask &

 (addr ^ (vpregs->memtlbRW[ispan*2]))))

 {

 return p;

 }

 return NULL;

}

Listing 2.4: Software TLB lookup in C/C++

This code compiles into almost as efficient a code sequence

as the original assembly code, except for a spill of ECX

which the Microsoft Visual Studio compiler generates,

mandated by the __fastcall calling convention of preserving

the ECX register.

On a 2.66 GHz Intel Core 2 host computer, the 68000 and

68040 instruction dispatch rate is about 120 to 170 million

guest instructions per second, or approximately one guest

instruction dispatch every 15 to 22 host clock cycles,

depending on the Atari ST or Mac OS workload.

The aggregate hit rate for the read TLB and write TLB is

typically over 95% while the hit rate for the code TLB’s

dispatch entries exceeds 98%.

For example, a workload consisting of booting Mac OS 8.1,

launching the Speedometer 3.23 benchmarking utility, and

running a short suite of arithmetic, floating point, and

graphics benchmarks dispatches a total of 3.216 billion

guest instructions of which 43 million were not already

cached, a 98.6% hit rate on instruction dispatch.

That same scenario generates 3.014 billion guest data read

and write accesses of which 132 million failed to translate,

for a 95.6% hit rate. The misses include accesses to

memory mapped I/O that never maps directly to the host.

This latest implementation of Gemulator now has very

favorable and portable characteristics:

 Runs on the minimal “least common denominator”

IA32 instruction set of 80386 which performs

efficient byte swapping without requiring a host to

support a BSWAP instruction,

 Short and predictably low-latency code paths,

 No exceptions are thrown as all guest memory

accesses are range checked,

 Less than 1 megabyte of scratch working memory.

These characteristics are applicable not just to running

68040 guest code, but for more modern byte-swapping

scenarios such as running PowerPC guest code on x86, or

running x86 guest code on PowerPC.

The high hit rate of guest instruction dispatch and guest

memory translation means that the majority of 68000 and

68040 instructions are simulated using short code paths

involving translation functions with excellent branch

prediction characteristics. As is described in the following

section, improving the branch prediction rates on the host is

critical.

3.0 Bochs

Bochs is a highly portable open source IA-32 PC emulator

written purely in C++ that runs on most popular platforms.

It includes emulation of the CPU engine, common I/O

devices, and custom BIOS. Bochs can be compiled to

emulate any modern x86 CPU architecture, including most

recent Core 2 Duo instruction extensions. Bochs is capable

of running most operating systems including MS-DOS,

Linux, Windows 9X/NT/2000/XP and Windows Vista.

Bochs was written by Kevin Lawton and currently

maintained by the Bochs open source project
21

. Unlike most

of its competitors like QEMU, Xen or VMware, Bochs

doesn’t feature a dynamic translation or virtualization

technologies but uses pure interpretation to emulate the

CPU.

During our work we took the official Bochs 2.3.5 release

sources tree and made it run over than three times faster

using only host independent and portable optimization

techniques without affecting emulation accuracy.

3.1 Quick introduction to Bochs internals

Our optimizations concentrated in the CPU module of the

Bochs full system emulator and mainly dealt with the

primary emulation loop optimization, called the CPU loop.

According to Bochs 2.3.5 profiling data, the CPU loop took

around 50% of total emulation time. It turned out that while

every instruction emulated relatively efficiently, Bochs

spent a lot of effort for routine operations like fetching,

decoding and dispatching instructions.

The Bochs 2.3.5 CPU main emulation loop looks very

similar to that of a physical non-pipelined micro-coded

CPU like Motorola 68000 or Intel 8086
22

. Every emulated

instruction passes through six stages during the emulation:

1. At prefetch stage, the instruction pointer

is checked for fetch permission according

to current privilege level and code

segment limits, and host instruction fetch

pointer is calculated. The prefetch code

also updates memory page timestamps

used for self modifying code detection by

memory accesses.

2. After prefetch stage is complete the

specific instruction could be looked up in

Bochs’ internal cache or fetched from the

memory and decoded.

3. When the emulator has obtained an

instruction, it can be instrumented on-the-

fly by internal or external debugger or

instrumentation tools.

4. In case an instruction contains memory

references, the effective address of an

instruction is calculated using an indirect

call to the resolve memory reference

function.

5. The instruction is executed using an

indirect call dispatch to the instruction’s

execution method, stored together with

instruction decode information.

6. At instruction commit the internal CPU

EIP state is updated. The previous state is

used to return to the last executed

instruction in case of an x86 architectural

fault occurring during the current

instruction’s execution.

HANDLE ASYNCHRONOUS

EXTERNAL EVENTS

PREFETCH

Instruction

cache

lookup

FETCH AND DECODE

INSTRUCTION

RESOLVE MEMORY REFERENCES

(ADDRESS GENERATION UNIT)

ACCESS MEMORY AND

EXECUTE

COMMIT

MISS

HIT

INSTRUMENT INSTRUCTION

(when needed)

Figure 3.1: Bochs CPU loop state diagram

As emulation speed is bounded by the latency of these six

stages, shortening any and each of them immediately

affects emulation performance.

3.2 Taking hardware ideas into emulation –

using decoded instructions trace cache

Variable length x86 instructions, many different decoding

templates, three possible operand and address sizes in x86-

64 mode make instruction fetch-decode operations one of

the heaviest parts of x86 emulation. The Bochs community

realized this and introduced the decoded instruction cache

to Bochs 2.0 at the end of 2002. The cache almost doubled

the emulator performance.

The Pentium 4 processor stores decoded and executed

instruction blocks into a trace cache
23

 containing up to 12K

of micro-ops. The next time when the execution engine

needs the same block of instructions, it can be fetched from

the trace cache instead of being loaded from the memory

and decoded again. The Pentium 4 trace cache operates in

two modes. In the “execute mode” the trace is feeding

micro-ops stored in the trace to the execution engine. This

is the mode that the trace cache normally runs in. Once a

trace cache miss occurs the trace cache switches into the

“build mode”. In this mode the fetch-decode engine fetches

and decodes x86 instructions from memory and builds a

micro-ops trace which is stored in the cache.

The trace cache introduced into Bochs 2.3.6 is very similar

to the Pentium 4 hardware implementation. Bochs

maintains a decoded instruction trace cache organized as a

32768-entry direct mapped array with each entry holding a

trace of up to 16 instructions. The tracing engine stops

when it detects an x86 instruction able to affect control flow

of the guest code, such as a branch taken, an undefined

opcode, a page table invalidation or a write to control

registers. Speculative tracing through potentially non-taken

conditional branches is allowed. An early-out technique is

used to stop trace execution when a taken branch occurs.

When the Bochs CPU loop is executing instructions from

the trace cache, all front-end overhead of prefetch and

decode is eliminated. Our experiments with a Windows XP

guest show most traces to be less than 7 guest instructions

in length and almost none longer than 16.

Figure 3.2: Trace length distribution for Windows XP boot

HANDLE ASYNCHRONOUS

EXTERNAL EVENTS

PREFETCH

Trace

cache

lookup

RESOLVE MEMORY REFERENCES

(ADDRESS GENERATION UNIT)

ACCESS MEMORY AND

EXECUTE

COMMIT

ADVANCE TO NEXT INSTRUCTION

MISS

HIT

INSTRUMENT INSTRUCTION

(when needed)

FETCH AND DECODE

INSTRUCTION

End of the

trace?

HANDLE ASYNCHRONOUS

EXTERNAL EVENTS

Store

trace

COMMIT TRACE

NOYES

Figure 3.3: Bochs CPU loop state diagram with trace cache

In addition to the over 20% speedup in Bochs emulation,

the trace cache has great potential for the future. We are

working on the following techniques which will help to

double emulation speed again in a short term:

 Complicated x86 instructions could be decoded to

several simpler micro-ops in the trace cache and

handled more efficiently by the emulator.

 Compiler optimization techniques can be applied

to the hot traces in the trace cache. Register move

elimination, no-op elimination, combining

memory accesses, replacing instruction dispatch

handlers, and redundant x86 flags update

elimination are only a few techniques that can be

applied to make hot traces run faster.

The software trace cache’s primary problem is direct

mapped associativity. This can lead to frequent trace cache

collisions due to aliasing of addresses at 32K and larger

power-of-two intervals. Hardware caches use multi-way

associativity to avoid aliasing issues. A software

implementation of a two- or four-way associative cache and

LRU management can potentially increase branch

misprediction during lookup, reducing cache gain to a

minimum.

What Bochs does instead today is use a 65536-entry table.

A hash function calculates the trace cache index of guest

address X using this formula:

 index := (X + (X<<2) + (X>>6)) mod 65536

We found that the best trace cache hashing function

requires both a left shift and a right shift, providing the non-

linearity so that two blocks of code separated by

approximately a power-of-two interval will likely not

conflict.

3.3 Host branch misprediction as biggest cause

of slow emulation performance

Every pipelined processor features branch prediction logic

used to predict whether a conditional branch in the

instruction flow of a program is likely to be taken or not.

Branch predictors are crucial in today's modern, superscalar

processors for achieving high performance.

Modern CPU architectures implement a set of sophisticated

branch predictions algorithms in order to achieve highest

prediction rate, combining both static and dynamic

prediction methods. When a branch instruction is executed,

the branch history is stored inside the processor. Once

branch history is available, the processor can predict branch

outcome – whether the branch should be taken and the

branch target.

The processor uses branch history tables and branch target

buffers to predict the direction and target of branches based

on the branch instruction’s address.

The Core micro-architecture branch predictor makes the

following types of predictions:

 Direct calls and jumps. The jump targets

are read from the branch target array

regardless of the taken/not taken

prediction.

 Indirect calls and jumps. May either be

predicted as having a monotonic target or

as having targets that vary in accordance

with recent program behavior.

 Conditional branches. Predicts branch

target and whether or not the branch will

be taken.

 Returns from procedure calls. The branch

predictor contains a 16-entry return stack

buffer. It enables accurate prediction for

RET instructions.

Let’s look closer into at the Bochs 2.3.5 main CPU

emulation loop. As can be seen the CPU loop alone already

gives enough work to the branch predictor due to two

indirect calls right in the heart of the emulation loop, one

for calculating the effective address of memory accessing

instructions, and another for dispatching to the instruction

execution method. In addition to these indirect calls many

instruction methods contain conditional branches in order to

distinguish different operand sizes or register/memory

instruction format.

A typical Bochs instruction handler method:

Listing 3.1: A typical Bochs instruction handler

Taking into account 20 cycles Core 2 Duo processor branch

misprediction penalty
24

 we might see that a cost of every

branch misprediction during instruction emulation became

huge. A typical instruction handler is short and simple

enough such that even a single extra misprediction during

void BX_CPU_C::SUB_EdGd(bxInstruction_c *i)

{

 Bit32u op2_32, op1_32, diff_32;

 op2_32 = BX_READ_32BIT_REG(i->nnn());

 if (i->modC0()) { // reg/reg format

 op1_32 = BX_READ_32BIT_REG(i->rm());

 diff_32 = op1_32 - op2_32;

 BX_WRITE_32BIT_REGZ(i->rm(), diff_32);

 }

 else { // mem/reg format

 read_RMW_virtual_dword(i->seg(),

 RMAddr(i), &op1_32);

 diff_32 = op1_32 - op2_32;

 Write_RMW_virtual_dword(diff_32);

 }

 SET_LAZY_FLAGS_SUB32(op1_32, op2_32,

 diff_32);

}

http://en.wikipedia.org/wiki/Conditional_branch
http://en.wikipedia.org/wiki/Instruction_%28computer_science%29
http://en.wikipedia.org/wiki/Superscalar

every instruction execution could slow the emulation down

by half.

3.3.1 Splitting common opcode handlers into

many to reduce branch misprediction

All Bochs decoding tables were expanded to distinguish

between register and memory instruction formats. At

decode time, it is possible to determine whether an

instruction is going to access memory during the execution

stage. All common instruction execution methods were split

into methods for register-register and register-memory

cases separately, eliminating a conditional check and

associated potential branch misprediction during instruction

execution. The change alone brought a ~15% speedup.

3.3.2. Resolve memory references with no

branch mispredictions

The x86 architecture has one of the most complicated

instruction formats of any processor. Not only can almost

every instruction perform an operation between register and

memory but the address of the memory access might be

computed in several ways.

In the most general case the effective address computation

in the x86 architecture can be expressed by the formula:

 Effective Address := (Base + Index * Scale +

Displacement) mod 2AddrSize

The arguments of effective address computation (Base,

Index, Scale and Displacement) can be encoded in many

different ways using ModRM and S-I-B instruction bytes.

Every different encoding might introduce a different

effective address computation method.

For example, when the Index field is not encoded in the

instruction, it could be interpreted as Index being equal to

zero in the general effective address (EA) calculation, or as

simpler formula which would look like:

 Effective Address := (Base + Displacement) mod

2AddrSize

Straight forward interpretation of x86 instructions decoding

forms already results in 6 different EA calculation methods

only for 32-bit address size:

 Effective Address := Base

 Effective Address := Displacement

 Effective Address := (Base + Displacement) mod 232

 Effective Address := (Base + Index * Scale) mod 232

 Effective Address := (Index * Scale + Displacement)

mod 232

 Effective Address := (Base + Index * Scale +

Displacement) mod 232

The Bochs 2.3.5 code went even one step ahead and split

every one of the above methods to eight methods according

to which one of the eight x86 registers (EAX...EDI) used as

a Base in the instruction. The heart of the CPU emulation

loop dispatched to one of thirty EA calculation methods for

every emulated x86 instruction accessing memory. This

single point of indirection to so many possible targets

results in almost a 100% chance for branch misprediction.

It is possible to improve branch prediction of indirect

branches in two ways – reducing the number of possible

indirect branch targets, and, replicating the indirect branch

point around the code. Replicating indirect branches will

allocate a separate branch target buffer (BTB) entry for

each replica of the branch. We choose to implement both

techniques.

As a first step the Bochs instruction decoder was modified

to generate references to the most general EA calculation

methods. In 32-bit mode only two EA calculation formulas

are left:

 Effective Address := (Base + Displacement) mod 232

 Effective Address := (Base + Index * Scale +

Displacement) mod 232

where Base or Index fields might be initialized to be a

special NULL register which always contains a value of

zero during all the emulation time.

The second step moved the EA calculation method call in

the main CPU loop and replicated it inside the execution

methods. With this approach every instruction now has its

own EA calculation point and is seen as separate indirect

call entity for host branch prediction hardware. When

emulating a guest basic block loop, every instruction in the

basic block might have its own EA form and could still be

perfectly predicted.

Implementation of these two steps brought ~40% emulation

speed total due elimination of branch misprediction

penalties on memory accessing instructions.

3.4. Switching from the PUSHF/POP to

improved lazy flags approach

One of the few places where Bochs used inline assembly

code was to accelerate the simulation of x86 EFLAGS

condition bits. This was a non-portable optimization, and as

it turned out, no faster than the portable alternative.

Bochs 2.3.7 uses an improved “lazy flags” scheme whereby

the guest EFLAGS bits are evaluated only as needed. To

facilitate this, handlers of arithmetic instructions execute

macros which store away the sign-extended result of the

operation, and as needed, one or both of the operands going

into the arithmetic operation.

Our measurements had shown that the greatest number of

lazy flags evaluations is for the Zero Flag (ZF), mostly for

Jump Equal and Jump Not Equal conditional branches. The

lazy flags mechanism is faster because ZF can be derived

entirely from looking at the cached arithmetic result. If the

saved result is zero, ZF is set, and vice versa. Checking a

value for zero is much faster than calling a piece of

assembly code to execute a PUSHF instruction on the host

on every emulated arithmetic instruction in order to update

the emulated EFLAGS register.

Similarly by checking only the top bit of the saved result,

the Sign Flag (SF) can be evaluated much more quickly

than the PUSHF way. The Parity Flag (PF) is similarly

arrived by looking at the lowest 8 bits of the cached result

and using a 256-byte lookup table to read the parity for

those 8 bits.

The Carry Flag (CF) is derived by checking the absolute

magnitude of the first operand and the cached result. For

example, if an unsigned addition operation caused the result

to be smaller than the first operand, an arithmetic unsigned

overflow (i.e. a Carry) occurred.

The more problematic flags to evaluate are Overflow Flag

(OF) and Adjust Flag (AF). Observe that for any two

integers A and B that (A + B) equals (A XOR B) when no

bit positions receive a carry in. The XOR (Exclusive-Or)

operation has the property that bits are set to 1 in the result

only if the corresponding bits in the input values are

different. Therefore when no carries are generated, (A + B)

XOR (A XOR B) equals zero. If any bit position b is not

zero, that indicates a carry-in from the next lower bit

position b-1, thus causing bit b to toggle.

The Adjust Flag indicates a carry-out from the 4
th

 least

significant bit of the result (bit mask 0x08). A carry out

from the 4
th

 bit is really the carry-in input to the 5
th

 bit (bit

mask 0x10). Therefore to derive the Adjust Flag, perform

an Exclusive-OR of the resulting sum with the two input

operands, and check bit mask 0x10, as follows:

 AF = ((op1 ^ op2) ^ result) & 0x10;

Overflow uses this trick to check for changes in the high bit

of the result, which indicates the sign. A signed overflow

occurs when both input operands are of the same sign and

yet the result is of the opposite sign. In other words, given

input A and B with result D, if (A XOR B) is positive, then

both (A XOR D) and (B XOR D) need to be positive,

otherwise an overflow has occurred. Written in C:

 OF = ((op1 ^ op2) & (op1 ^ result)) < 0;

Further details of this XOR math are described online
25

.

3.5. Benchmarking Bochs

The very stunning demonstration of how the design

techniques we just described were effective shows up in the

time it takes Bochs to boot a Windows XP guest on various

host computers and how that time has dropped significantly

from Bochs 2.3.5 to Bochs 2.3.6 to Bochs 2.3.7. The table

below shows the elapsed time in seconds from the moment

when Bochs starts the Windows XP boot process to the

moment when Windows XP has rendered its desktop icons,

Start menu, and task bar. Each Bochs version is compiled as

a 32-bit Windows application and configured to simulate a

Pentium 4 guest CPU.

 1000 MHz

Pentium III

2533 MHz

Pentium 4

2666 MHz

Core 2 Duo

Bochs

2.3.5

882 595 180

Bochs

2.3.6

609 533 157

Bochs

2.3.7

457 236 81

Table 3.1: Windows XP boot time on different hosts

Booting Windows XP is not a pure test of guest CPU

throughput due to tens of megabytes of disk I/O and the

simulation of probing for and initialization of hardware

devices. Using a Visual C++ compiled CPU-bound test

program
26

 one can get an idea of the peak throughput of the

virtual machine’s CPU loop.

#include "windows.h"

#include "stdio.h"

static int foo(int i)

{

 return(i+1);

}

int main(void)

{

 long tc = GetTickCount();

 int i;

 int t = 0;

 for(i = 0; i < 100000000; i++)

 t += foo(i);

 tc = GetTickCount() - tc;

 printf("tc=%ld, t=%d\n", tc, t, t);

 return t;

}
Listing 3.2: Win32 instruction mix test program

The test is compiled as two test executables, T1FAST and

T1SLOW, which are the optimized and non-optimized

compiles of this simple test code that incorporates

arithmetic operations, function calls, and a loop. The

difference between the two builds is that the optimized

version (T1FAST) makes more use of x86 guest registers,

while the unoptimized version (T1SLOW) performs more

guest memory accesses.

On a modern Intel Core 2 Duo based system, this test code

achieves similar performance on Bochs as it does on the

dynamic recompilation based QEMU virtual machine:

Execution Mode T1FAST.EXE time T1SLOW.EXE time

Native 0.26 0.26

QEMU 0.9.0 10.5 12

Bochs 2.3.5 25 31

Bochs 2.3.7 8 10

Table 3.2: Execution time in seconds of Win32 test program

Instruction count instrumentation shows that T1FAST

averages about 102 million guest instructions per second

(MIPS). T1SLOW averages about 87 MIPS due to a greater

mix of guest instructions that perform a guest-to-host

memory translation using the software TLB mechanism

similar to the one used in Gemulator.

This simple benchmark indicates that the average guest

instruction requires approximately 26 to 30 host clock

cycles. We tested some even finer grained micro-

benchmarks written in assembly code, specifically breaking

up the test code into:

 Simple register-register operations such as MOV

and MOVSX which do not consume or update

condition flags,

 Register-register arithmetic operations such as

ADD, INC, SBB, and shifts which do consume

and update condition flags,

 Simple floating point operations such as FMUL,

 Memory load, store, and read-modify-write

operations,

 Indirect function calls using the guest instruction

CALL EAX,

 The non-faulting Windows system call

VirtualProtect(),

 Inducing page faults to measure round trip time of

a __try/__except structured exception handler

The micro-benchmarks were performed on Bochs 2.3.5, the

current Bochs 2.3.7, and on QEMU 0.9.0 on a 2.66 GHz

Core 2 Duo test system running Windows Vista SP1 as host

and Windows XP SP2 as guest operating system.

 Bochs 2.3.5 Bochs 2.3.7 QEMU 0.9.0

Register move

(MOV, MOVSX)

43 15 6

Register arithmetic

(ADD, SBB)

64 25 6

Floating point

multiply

1054 351 27

Memory store of

constant

99 59 5

Pairs of memory

load and store

operations

193 98 14

Non-atomic read-

modify-write

112 75 10

Indirect call

through guest

EAX register

190 109 197

VirtualProtect

system call

126952 63476 22593

Page fault and

handler

888666 380857 156823

Best case peak

guest execution

rate in MIPS

62 177 444

Table 3.3: Approximate host cycle costs of guest operations

This data is representative of over 100 micro-benchmarks,

and revealed that timings for similar guest instructions

tended to cluster around the same number of clock cycles.

For example, the timings for register-to-register move

operations, whether byte moves, full register moves, or sign

extended moves, were virtually identical on all four test

systems. Changing the move to an arithmetic operation and

thus introducing the overhead of updating guest flags

similarly affects the clock cycle costs, and is mostly

independent of the actual arithmetic operation (AND, ADD,

XOR, SUB, etc) being performed. This is due to the

relatively fixed and predictable cost of the Bochs lazy flags

implementation.

Read-modify-write operations are implemented more

efficiently than separate load and store operations due to the

fact that a read-modify-write access requires one single

guest-to-host address translation instead of two. Other

micro-benchmarks not listed here show that unlike past

Intel architectures, the Core 2 architecture also natively

performs a read-modify-write more efficiently than a

separate load and store sequence, thus allowing QEMU to

benefit from this in its dynamically recompiled code.

However, dynamic translation of code and the associated

code cache management do show up as a higher cost for

indirect function calls.

4.0 Proposed x86 ISA Extensions –

Lightweight Alternatives to Hardware

Virtualization

The fine-grained software TLB translation code listed in

section 2.3 is nothing more than a hash table lookup which

performs a “fuzzy compare” for the purposes of matching a

range of addresses, and returns a value which is used to

translate the matched address. This is exactly what TLB

hardware in CPUs does today.

It would be of benefit to binary translation engines if the

TLB functionality was programmatically exposed for

general purpose use, using a pair of instructions to add a

value to the hash table, and an instruction to look up a value

in the hash table. This entire code sequence:

 mov edx,ebp

 shr edx,bitsSpan

 and edx,dwIndexMask

 mov ecx,ebp

 add ecx,cb-1

 xor ecx,dword ptr [memtlbRW+edx*8]

 mov eax,dword ptr [memtlbRW+edx*8+4]

 test ecx,dwBaseMask

 jne emulate

could be reduced to two instructions, based on the new

“Hash LookUp” instruction HASHLU which takes a

destination register (EAX), an r/m32/64 addressing mode

which resolves to an address range to look up, and a “flags”

immediate which determines the matching criteria.

 hashlu eax,dword ptr [ebp],flags

 jne emulate

Flags could be an imm32 value similar to the mask used in

the TEST instruction of the original sequence, or an imm8

value in a more compact representation (4 bits to specify

alignment requirements in lowest bits, and 4 bits to specify

block size in bits). The data access size is also keyed as part

of the lookup, as it represents the span of the address being

looked up.

This instruction would potentially reduce the execution

time of the TLB lookup and translation from about 8 clock

cycles to potentially one cycle in the branch predicted case.

To add a range to the hash table, use the new “Hash Add”

instruction HASHADD, which takes an effective address to

use as the fuzzy hash key, the second parameter specifies

the value to hash, and flags again is either an imm32 or

imm8 value which specifies size of the range being hashed:

 hashadd dword ptr [ebp],eax,flags

 jne error

The instruction sets Zero flag on success, or clears it when

there is conflict with another range already hashed or due to

a capacity limitation such that the value could not be added.

The hardware would internally implement a TLB structure

of implementation specific size and set associativity, and

the hash table may or may not be local to the core or shared

between cores. Internally the entries would be keyed with

additional bits such as core ID or CR3 value or such and

could possibly coalesce contiguous ranges into a single

entry.

This programmable TLB would have nothing to do

functionally with the MMU’s TLB. This one exists purely

for user mode application use to accelerate table lookups

and range checks in software. As with any hardware cache,

it is subject to be flushed arbitrarily and return false misses,

but never false positives.

4.1 Instructions to access EFLAGS efficiently

LAHF has the serious restriction of operating on a partial

high register (AH) which is not optimal on some

architectures (writing to it can cause a partial register stall

as on Pentium III, and accessing it may be slower than AL

as is the case on Pentium 4 and Athlon).

LAHF also only returns 5 of the 6 arithmetic flags, and does

not return Overflow flag, or the Direction flag.

PUSHF is too heavyweight, necessitating both a stack

memory write and stack memory read.

A new instruction is needed, SXF reg32/reg64/r/m32/64

(Store Extended Flags), which loads a full register with a

zero extended representation of the 6 arithmetic flags plus

the Direction flag. The bits are packed down to lowest 7

bits for easy masking with imm8 constants. For future

expansion the data value is 32 bits or 64-bits, not just 8 bits.

SXF can find use in virtual machines which use binary

translation and must save the guest state before calling glue

code, and in functions which must preserve existing

EFLAGS state. A complementary instruction LXF (Load

Extended Flags) would restore the state.

A SXF/LXF sequence should have much lower latency than

PUSHF/POPF, since it would not cause partial register

stalls nor cause the serializing behavior of a full EFLAGS

update as happens with POPF.

5.0 Conclusions and Further Research

Using two completely different virtual machines we have

demonstrated techniques that allow a mainstream Core 2

hosted virtual machine to reach purely interpreted execution

rates of over 100 MIPS, peaking at about 180 MIPS today.

Our results show that the key to interpreter performance is

to focus on basic micro-architectural issues such as

reducing branch mispredictions, using hashing to reduce

trace cache collisions, and minimizing memory footprint.

Counter-intuitive to conventional wisdom, it shows that it is

irrelevant whether the virtual machine CPU interpreter is

implemented in assembly language or C++, whether the

guest and host memory endianness matches or not, or even

whether one is running 1990’s Macintosh code or more

current Windows code. This is indicated by the fact that

both Bochs and Gemulator exhibit nearly identical average

and peak execution rates despite the very different guest

environments which they are simulating.

This suggests that C or C++ can implement a portable

virtual machine framework achieving performance up to

hundreds of MIPS, independent of guest and host CPU

architectures. Compared to an x86-to-x86 dynamic

recompilation engine, the cost of portability today stands at

less than three-fold performance slowdown. In some guest

code sequences, the portable interpreted implementation is

already faster. This further suggests that specialized x86

tracing frameworks such as Pin or Nirvana which need to

minimize their impact on the guest environment they are

tracing could be implemented using such an interpreted

virtual machine framework.

To continue our research into the reduction of unpredictable

branching we intend to explore macro-op fusion of guest

code to reduce the total number of dispatches, as well as

continuing to split out even more special cases of common

opcode handlers. Either of these techniques would result in

further elimination of explicit calls of EA calculation

methods.

To confirm portability and performance on non-x86 host

systems, we plan to benchmark Bochs on a PowerPC-based

Macintosh G5 as well on Fedora Linux running on Sony

Playstation 3.

We plan to benchmark flash drive based devices such as the

ASUS EEE sub-notebook and Windows Mobile phones. An

interesting area to explore on such memory constrained

devices is to measure whether using fine-grained memory

translation and per-block allocation of guest memory on the

host can permit a virtual machine to require far less

memory than the usual approach of allocating the entire

guest RAM block up front whether it ever gets accessed or

not.

This fine-grained approach could effectively yield a

“negative footprint” virtual machine, allowing the

virtualization of a guest operating system which otherwise

could not even be natively booted on a memory constrained

device. This in theory could allow for running Windows XP

on a cell phone, or running Windows Vista on the 256-

megabyte Sony Playstation 3 and on older PC systems.

Finally, using our proposed ISA extensions we believe that

the performance gap between interpretation and direct

execution can be minimized by eliminating much of the

repeated computation involved in guest-to-host address

translation and computation of guest conditional flags state.

Such ISA extensions would be simpler to implement and

verify than existing heavyweight hardware virtualization,

making them more suitable for use on low-power devices

where lower gate count is preferable.

5.1 Acknowledgment

We thank our shepherd, Mauricio Breternitz Jr., and our

reviewers Avi Mendelson, Martin Taillefer, Jens Troeger,

and Ignac Kolenko for their feedback and insight.

References

1
 VMware and CPU Virtualization Technology, VMware,

http://download3.vmware.com/vmworld/2005/pac346.pdf

2 A Comparison of Software and Hardware Techniques for x86

Virtualization, Keith Adams, Ole Agesen, ASPLOS 2006,
http://www.vmware.com/pdf/asplos235_adams.pdf

3 VMware Fusion, VMware, http://www.vmware.com/products/fusion/

4 Microsoft Hyper-V, Microsoft,

http://www.microsoft.com/windowsserver2008/en/us/hyperv-faq.aspx

5 Xen, http://xen.xensource.com/

6 Trap-And-Emulate explained,

http://www.cs.usfca.edu/~cruse/cs686s07/lesson19.ppt

7 Pin, http://rogue.colorado.edu/Pin/

8 PinOS: A Programmable Framework For Whole-System Dynamic

Instrumentation, http://portal.acm.org/citation.cfm?id=1254830

9 Framework for Instruction-level Tracing and Analysis of Program

Executions, http://www.usenix.org/events/vee06/full_papers/p154-

bhansali.pdf

10 PTLSim cycle accurate x86 microprocessor simulator,

http://ptlsim.org/

11 DynamoRIO, http://cag.lcs.mit.edu/dynamorio/

12 DR Emulator, Apple Corp.,

http://developer.apple.com/qa/hw/hw28.html

13 Rosetta, Apple Corp., http://www.apple.com/rosetta/

14 Accelerating two-dimensional page walks for virtualized systems.
Ravi Bhargava, Ben Serebrin, Francesco Spadini, Srilatha Manne:

ASPLOS 2008

15 Gemulator, Emulators, http://emulators.com/gemul8r.htm

16 SoftMac XP 8.20 Benchmarks (multi-core),

http://emulators.com/benchmrk.htm#MultiCore

17 Vigilante: End-to-End Containment of Internet Worms,

http://research.microsoft.com/~manuelc/MS/VigilanteSOSP.pdf

18 Singularity: Rethinking the Software Stack,

http://research.microsoft.com/os/singularity/publications/OSR2007_Rethin
kingSoftwareStack.pdf

19 Transmeta Code Morphing Software,
http://www.ptlsim.org/papers/transmeta-cgo2003.pdf

20 Inside ST Xformer II, http://www.atarimagazines.com/st-

log/issue26/18_1_INSIDE_ST_XFORMER_II.php

21 Bochs, http://bochs.sourceforge.net

22 Intel IA32 Optimization Manual:
(http://www.intel.com/design/processor/manuals/248966.pdf)

23 Overview of the P4's trace cache,
http://arstechnica.com/articles/paedia/cpu/p4andg4e.ars/5

24 Optimizing Indirect Branch Prediction Accuracy in Virtual

Machine Interpreters

http://www.complang.tuwien.ac.at/papers/ertl&gregg03.ps.gz

25 NO EXECUTE! Part 11, Darek Mihocka,

http://www.emulators.com/docs/nx11_flags.htm

26 Instruction Mix Test Program, http://emulators.com/docs/nx11_t1.zip

http://download3.vmware.com/vmworld/2005/pac346.pdf
http://www.vmware.com/pdf/asplos235_adams.pdf
http://www.vmware.com/products/fusion/
http://www.microsoft.com/windowsserver2008/en/us/hyperv-faq.aspx
http://xen.xensource.com/
http://www.cs.usfca.edu/~cruse/cs686s07/lesson19.ppt
http://rogue.colorado.edu/Pin/
http://portal.acm.org/citation.cfm?id=1254830
http://www.usenix.org/events/vee06/full_papers/p154-bhansali.pdf
http://www.usenix.org/events/vee06/full_papers/p154-bhansali.pdf
http://ptlsim.org/
http://cag.lcs.mit.edu/dynamorio/
http://developer.apple.com/qa/hw/hw28.html
http://www.apple.com/rosetta/
http://emulators.com/
http://emulators.com/benchmrk.htm#MultiCore
http://research.microsoft.com/~manuelc/MS/VigilanteSOSP.pdf
http://research.microsoft.com/os/singularity/publications/OSR2007_RethinkingSoftwareStack.pdf
http://research.microsoft.com/os/singularity/publications/OSR2007_RethinkingSoftwareStack.pdf
http://www.ptlsim.org/papers/transmeta-cgo2003.pdf
http://bochs.sourceforge.net/
http://www.intel.com/design/processor/manuals/248966.pdf
http://arstechnica.com/articles/paedia/cpu/p4andg4e.ars/5
http://www.complang.tuwien.ac.at/papers/ertl&gregg03.ps.gz
http://www.emulators.com/docs/nx11_flags.htm

