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Abstract 

  

A recent trend in x86 virtualization products from 

Microsoft, VMware, and XenSource has been the reliance 

on hardware virtualization features found in current 64-bit 

microprocessors. Hardware virtualization allows for direct 

execution of guest code and potentially simplifies the 

implementation of a Virtual Machine Monitor (or 

"hypervisor")
1
. Until recently, hypervisors on the PC 

platform have relied on a variety of techniques ranging 

from the slow but simple approach of pure interpretation, 

the memory intensive approach of dynamic recompilation 

of guest code into translated code cache, to a hardware 

assisted technique known as "ring compression" which 

relies on the host MMU for hardware memory protection. 

These techniques traditionally either deliver poor 

performance
2
, or are not portable. This makes most 

virtualization products unsuitable for use on cell phones, on 

ultra-mobile notebooks such as ASUS EEE or OLPC 

XO, on game consoles such as Xbox 360 or Sony 

Playstation 3, or on older Windows 98/2000/XP class PCs. 

 

This paper describes ongoing research into the design of 

portable virtual machines which can be written in C or C++, 

have reasonable performance characteristics, could be 

hosted on PowerPC, ARM, and legacy x86 based systems, 

and provide practical backward compatibility and security 

features not possible with hardware based virtualization. 
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1.0 Introduction 

 

At its core, a virtual machine is an indirection engine which 

intercepts code and data accesses of a sandboxed “guest” 

application or operating system and remaps them to code 

sequences and data accesses on a “host” system. Guest code 

is remapped to functionally identical code on the host, using 

binary translation or sandboxed direct execution. Guest data 

accesses are remapped to host memory and checked for 

access privilege rights, using software or hardware 

supported address translation. 

 

When a guest virtual machine and host share a common 

instruction set architecture (ISA) and memory model, this is 

commonly referred to as “virtualization”. VMware Fusion 
3
 

for running Windows applications inside of Mac OS X, 

Microsoft’s Hyper-V 
4
 feature in Windows Server 2008, 

and Xen 
5
  are examples of virtualization products. These 

virtual machines give the illusion of full-speed direct 

execution of native guest code. However, the code and data 

accesses in the guest are strictly monitored and controlled 

by the host’s memory management hardware. Any attempt 

to access a memory address not permitted to the guest 

results in an exception, typically an access violation page 

fault or a “VM exit event”, which hands control over to the 

hypervisor on the host. The faulting instruction is then 

emulated and either aborted, re-executed, or skipped over. 

This technique of virtualization is also known as “trap-and-

emulate” since certain guest instructions must be emulated 

instead of executed directly in order to maintain the 

sandbox.
6
. 

 

Virtualization products need to be fast since their goal is to 

provide hardware-assisted isolation with minimal runtime 

overhead, and therefore generally use very specific 

assembly language optimizations and hardware features of 

a given host architecture. 

 

A more general class of virtual machine is able to handle 

guest architectures which differ from the host architecture 

by emulating each and every guest instruction. Using some 

form of binary translation, either bytecode interpretation or 

dynamic recompilation or both, such virtual machines are 

able to work around differences in ISA, memory models, 

endianness, and other differentiating factors that prevent 

direct execution. 

 

Emulation techniques generally have a noticeable 

slowdown compared to virtualization, but have benefits 

such as being able to easily capture traces of the guest code 
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or inject instrumentation. Dynamic instrumentation 

frameworks such as Intel’s Pin 
7
 and PinOS 

8
, Microsoft’s 

Nirvana
9
, PTLsim

10
, and DynamoRIO

11
 programmatically 

intercept guest code and data accesses, allowing for the 

implementation of reverse execution debugging and 

performance analysis tools. These frameworks are powerful 

but can incur orders of magnitude slowdown due to the 

guest-to-host context switching on each and every guest 

instruction. 

 

Emulation products also end up getting customized in host-

specific ways for performance at the cost of portability. 

Apple’s original 68020 emulator for PowerPC based Macs 
12

 and their more recent Rosetta engine in Mac OS X which 

run PowerPC code on x86 
13

 are examples of much targeted 

pairings of guest and host architectures in an emulator. 

 

As virtualization products increasingly rely on hardware-

assisted acceleration for very specialized usage scenarios, 

their value diminishes for use on legacy and low-end PC 

systems, for use on new consumer electronics platforms 

such as game consoles and cell phones, and for 

instrumentation and analysis scenarios. As new devices 

appear, time-to-market may be reduced by avoiding such 

one-off emulation products that are optimized for a 

particular guest-host pairing. 

1.1 Overview of a Portable Virtual Machine 

Infrastructure 

 

For many use cases of virtualization we believe that it is a 

fundamental design flaw to merely target the maximization 

of best-case performance above all else, as has been the 

recent trend. Such an approach not only results in hardware-

specific implementations which lock customers into limited 

hardware choices, but the potentially poor worst-case 

performance may result in unsatisfactory overall 

performance
14

. 

 

We are pursuing a virtual machine design that delivers 

fast CPU emulation performance but where portability 

and versatility are more important than simply 

maximizing peak performance. 

 

We tackled numerous design issues, including: 

 

 Maintaining portability across legacy x86 and non-

x86 host systems, and thus eliminating the use of 

host-dependent optimizations, 

 Bounding the memory overhead of a hypervisor to 

allow running in memory constrained 

environments such as cell phones and game 

consoles, 

 Bounding worst-case performance, and thus 

allowing for efficient tracing and run-time 

analysis, 

 Efficiently dispatching guest instructions on the 

host, 

 Efficiently mapping guest memory to the host, 

and, 

 Exploring simple and lightweight hardware 

acceleration alternatives. 

 

Our research on two different virtual machines – the Bochs 

portable PC emulator which simulates both 32-bit x86 and 

x86-64 architectures, and the Gemulator
15

 Atari ST and 

Apple Macintosh 68040 emulator on Windows – shows that 

in both cases it is possible to achieve full system guest 

simulation speeds in excess of 100 MIPS (millions of 

instructions per second) using purely interpreted execution 

which does not rely on hardware MMU capabilities or even 

on dynamic recompilation. This work is still in progress, 

and we believe that further performance improvements are 

possible using interpreted execution to where a portable 

virtual machine running on a modern Intel Core 2 or 

PowerPC system could achieve performance levels equal to 

what less than ten years ago would have been a top of the 

line Intel Pentium III based desktop. 

 

A portable implementation offers other benefits over 

vendor specific implementations, such as deterministic 

execution, i.e. the ability to take a saved state of a virtual 

machine and re-execute the guest code with deterministic 

results regardless of the host. For example, it would be 

highly undesirable for a virtual machine to suddenly behave 

differently simply because the user chose to upgrade his 

host hardware. 

 

Portability suggests that a virtual machine’s hypervisor 

should be written in a high level language such as C or 

C++. A portable hypervisor needs to support differences in 

endianness between guest and host, and even differences in 

register width and address space sizes between guest and 

host should not be blocking issues. An implementation 

based on a high level language must be careful to try to 

maintain a bounded memory footprint, which is better 

suited for mobile and embedded devices. 

 

Maintaining portability and bounding the memory footprint 

led to the realization that dynamic recompilation (also 

known as just-in-time compilation or “jitting”) may not 

deliver beneficial speed gains over a purely interpreted 

approach. This is due to various factors, including the very 

long latencies incurred on today’s microprocessors for 

executing freshly jitted code, the greater code cache and L2 

cache pressure which jitting produces, and the greater cost 

of detecting and properly handling self-modifying code in 

the guest. Our approach therefore does not rely on jitting as 

its primary execution mechanism. 



 

Supporting the purely-interpreted argument is an easily 

overlooked aspect of the Intel Core and Core 2 

architectures: the stunning efficiency with which these 

processors execute interpreted code. In benchmarks first 

conducted in 2006 on similar Windows machines, we found 

that a 2.66 GHz Intel Core 2 based system will consistently 

deliver two to three times the performance of a 2.66 GHz 

Intel Pentium 4 based system when running interpretation 

based virtual machines such as SoftMac
16

. Similar results 

have been seen with Gemulator, Bochs, and other 

interpreters. In one hardware generation on Intel 

microprocessors, interpreted virtual machines make a lot 

more sense. 

 

Another important design goal is to provide guest 

instrumentation functionality similar to Pin and Nirvana, 

but with less of a performance penalty when such 

instrumentation is active. This requires that the amount of 

context switching involved between guest state and host 

state be kept to a minimum, which once again points the 

design at an interpreted approach. Such a low-overhead 

instrumentation mechanism opens the possibilities to 

performing security checks and analysis on the guest code 

as it is running in a way that is less intrusive than trying to 

inject it into the guest machine itself. Imagine a virus 

detection or hot-patching mechanism that is built into the 

hypervisor which then protects otherwise vulnerable guest 

code. Such a proof-of-concept has already been 

demonstrated at Microsoft using a Nirvana based approach 

called Vigilante
17

. Most direct execution based hypervisors 

are not capable of this feat today. 

 

Assumptions taken for granted by virtual machine designs 

of the past need to be re-evaluated for use on today’s CPU 

designs. For example, with the popularity of low power 

portable devices one should not design a virtual machine 

that assumes that hardware FPU (floating point unit) is 

present, or even that a hardware memory management is 

available. 

 

Recent research from Microsoft’s Singularity project 
18

 

shows that software-based memory translation and isolation 

is an efficient means to avoid costly hardware context 

switches. We will demonstrate a software-only memory 

translation mechanism which efficiently performs guest-to-

host memory translation, enforces access privilege checks, 

detects and deals with self-modifying code, and performs 

byte swapping between guest and host as necessary. 

 

Finally, we will identify those aspects of current micro-

architectures which impede efficient virtual machine 

implementation and propose simple x86 ISA extensions 

which could provide lightweight hardware-assisted 

acceleration to an interpreted virtual machine. 

 

In the long term such ISA extensions, combined with a 

BIOS-resident virtual machine, could allow future x86 

microprocessor implementations to completely remove not 

only hardware related to 16-bit legacy support, but also 

hardware related to segmentation, paging, heavyweight 

virtualization, and rarely used x86 instructions. This would 

reduce die sizes and simplify the hardware verification. 

Much as was the approach of Transmeta in the late 1990’s, 

the purpose of the microprocessor becomes that of being an 

efficient host for virtual machines
19

. 

 

1.2 Overview of This Paper 

 

The premise of this paper is that an efficient and portable 

virtual machine can be developed using a high-level 

language that uses purely interpreted techniques. To show 

this we looked at two very different real-world virtual 

machines - Gemulator and Bochs - which were 

independently developed since the 1990s to emulate 68040 

and x86 guest systems respectively. Since these emulators 

are both interpretation based and are still actively 

maintained by each of the authors of this paper, they served 

as excellent test cases to see if similar optimization and 

design techniques could be applied to both. 

 

Section 2 discusses the design of Gemulator and looks at 

several past and present techniques used to implement its 

68040 ISA interpreter. Gemulator was originally developed 

almost entirely in x86 assembly code that was very x86 

MS-DOS and x86 Windows specific and not portable even 

to a 64-bit Windows platform. 

 

Section 3 discusses the design of Bochs, and some of the 

many optimization and portability techniques used for its 

Bochs x86 interpreter. The work on Bochs focused on 

improving the performance of its existing portable C++ 

code as well as eliminating pieces of non-portable assembly 

code in an efficient manner. 

 

Based on the common techniques that resulted from the 

work on both Gemulator and Bochs and the common 

problems encountered in both – guest-to-host address 

translation and guest flags emulation - Section 4 proposes 

simple ISA hardware extensions which we feel could aid 

the performance of any arbitrary interpreter based virtual 

machine.  

 



2.0 Gemulator 
 

Gemulator is an MS-DOS and Windows hosted emulator 

which runs Atari 800, Atari ST, and classic 680x0 Apple 

Macintosh software. The beginnings of Gemulator date 

back to 1987 as a tutorial on assembly language and 

emulation in the Atari magazine ST-LOG
20

. In 1991, 

emulation of the Motorola MC68000 microprocessor and 

the Atari ST chipset was added, and in 1997 a native 32-bit 

Windows version of Gemulator was developed which 

eventually added support for a 68040 guest running Mac 

OS 8.1 in a release called “SoftMac”. Each release of 

Gemulator was based around a 68000/68040 bytecode 

interpreter written in 80386 assembly language and which 

was laboriously retuned every few years for 486, Pentium 

Pro “P6”, and Pentium 4 “Netburst” cores. 

 

In the summer of 2007 work began to start converting the 

Gemulator code to C for eventually hosting on both 32-bit 

and 64-bit host machines. Because of the endian difference 

between 68000/68040 and 80386 architectures, it was a 

goal to keep the new C code as byte agnostic as possible. 

And of course, the conversion from 80386 assembly 

language to C should incur as little performance penalty as 

possible. 

 

The work so far on Gemulator 9.0 has focused on 

converting the guest data memory access logic to portable 

code, and examining the pros and cons of various guest-to-

host address translation techniques which have been used 

over the years and selecting the one that best balances 

efficiency and portability. 

 

2.1 Byte Swapping on the Intel 80386 
 

A little-endian architecture such as Intel 80386 stores the 

least significant byte first, while a big-endian architecture 

such as Motorola 68000 stores the most significant byte 

first. Byte values, such as ASCII text characters, are stored 

identically, so an array of bytes, or a text string is stored in 

memory the same regardless of endianness. 

 

Since the 80386 did not support a BSWAP instruction, the 

technique in Gemulator was to treat all of guest memory 

address space - all 16 megabytes of it for 68000 guests - as 

one giant integer stored in reverse order. Whereas a 68000 

stores memory addresses G, G+1, G+2, etc. in ascending 

order, Gemulator maps guest address G to host address H, 

G+1 maps to H-1, G+2 maps to H-2, etc.  G + H is 

constant, such that G = K – H, and H = K – G. 

 

Multi-byte data types, such as a 32-bit integer can be 

accessed directly from guest space by applying a small 

adjustment to account for the size of the data access. For 

example, to read a 32-bit integer from guest address 100, 

calculate the guest address corresponding to the last byte of 

that access before negating, so in this case guest address 

100 + sizeof(int) – 1 = guest address 103. The memory read 

*(int *)&K[-103] correctly returns the guest data. 

 

 

The early-1990’s releases of Gemulator were hosted on 

MS-DOS and on Windows 3.1, and thus did not have the 

benefit of Win32 or Linux style memory protection and 

mapping APIs. As such these interpreters also bounds 

checked each negated guest offset such that only guest 

RAM accesses (usually guest addresses 0 through 4 

megabytes) used the direct access, while all other accesses, 

including to guest ROM space, video frame buffer RAM, 

and memory mapped I/O, took a slower path through a 

hardware emulation handler. 

 

Instrumentation showed that only about 1 in 1000 memory 

accesses on average failed the bounds check, allowing 

roughly 99.9% of guest memory accesses to use the “adjust-

and-negate” bounds checking scheme, and this allowed a 33 

MHz 80386 based PC to efficiently emulate close to the full 

speed of the original 8 MHz 68000 Atari ST and Apple 

Macintosh computers. 

 

2.2 Page Table using XOR Translation 
 

A different technique must be used when mapping the 

entire 32-bit 4-gigabyte address space of the 68040 to the 

smaller than 2-gigabyte address of a Windows application. 

The answer relies on the observation that subtracting an 

integer value from 0xFFFFFFFF gives the same result as 

XOR-ing that same value to 0xFFFFFFFF. For example: 

 
    0xFFFFFFFF – 0x12345678 = 0xEDCBA987 
  0xFFFFFFFF XOR 0x12345678 = 0xEDCBA987 

 

This observation allows for portions of the guest address 

space to be mapped to the host in power-of-2 sized power-

of-2-aligned blocks. The XOR operation, instead of a 

subtraction, is used to perform the byte-swapping address 

translation. Every byte within each such block will have a 

unique XOR constant such that the H = K –G property is 

maintained. 

 

For example, mapping 256 megabytes of Macintosh RAM 

from guest address 0x00000000..0x0FFFFFFF to a 256-

megabyte aligned host block allocated at address 

0x30000000 requires that the XOR constant be 

0x3FFFFFFF, which is derived taking either the XOR of 

the address of that host block and the last byte of the guest 

range (0x30000000 XOR 0x0FFFFFFF) or the first address 

of the guest range and the last byte of the allocated host 

range (0x00000000 XOR 0x3FFFFFFF). Guest address 

0x00012345 thus maps to host address 0x3FFFFFFF – 

0x00012345 = 0x3FFEDCBA for this particular allocation. 

 



To reduce fragmentation, Gemulator starts with the largest 

guest block to map and then allocates progressively smaller 

blocks, the order usually being guest RAM, then guest 

ROM, then guest video frame buffer. The algorithm used is 

as follows: 

 
  for each of the RAM ROM and video guest address ranges 

    { 

    calculate the size of that memory range rounded up to next power of 2 

    for each megabyte-sized range of Windows host address space 

    { 

      calculate the XOR constant for the first and last byte of the block 

      if the two XOR constants are identical 

      { 

        call VirtualAlloc() to request that specific host address range 

        if successful record the address and break out of loop; 

      } 

    } 

  } 

Listing 2.1: Pseudo code of Gemulator’s allocator 

 

This algorithm scans for host free blocks a megabyte at a 

time because it turns out the power-of-2 alignment need not 

match the block size. This helps to find large unused blocks 

of host address space when memory fragmentation is 

present. 

 

For example, a gigabyte of Macintosh address space 

0x00000000 through 0x3FFFFFFF can map to Windows 

host space 0x20000000 though 0x5FFFFFFF because there 

exists a consistent XOR constant: 

 
  0x5FFFFFFF XOR 0x00000000 = 0x5FFFFFFF 

  0x20000000 XOR 0x3FFFFFFF = 0x5FFFFFFF 

 

This XOR-based translation is endian agnostic. When host 

and guest are of the same endianness, the XOR constant 

will have zeroes in its lower bits. When the host and guest 

are of opposite endianness, as is the case with 68040 and 

x86, the XOR constant has its lower bits set. How many 

bits are set or cleared depends on the page size granularity 

of mapping. 

 

A granularity of 64K was decided upon based on the fact 

that the smallest Apple Macintosh ROM is 64K in size. 

Mapping 4 gigabytes of guest address space at 64K 

granularity generates 4GB/64K = 65536 different guest 

address ranges. A 65536-entry software page table is used, 

and the original address negation and bounds check from 

before is now a traditional table lookup which uses XOR to 

convert the input guest address in EBP to a host address in 

EDI:: 

 
; Convert 68000 address to host address in EDI 

; Sign flag is SET if EA did not map. 

    mov   edi,ebp 

    shr   ebp,16 

    xor   edi,dword ptr[pagetbl+ebp*4] 

 

Listing 2.2: Guest-to-host mapping using flat page table 
 

 

For unmappable guest addresses ranges such as memory 

mapped I/O, the XOR constant for that range is selected 

such that the resulting value in EDI maps to above 

0x80000000. This can now be checked with an explicit JS 

(jump signed) conditional branch to the hardware emulation 

handler, or by the resulting access violation page fault 

which invokes the same hardware emulation handler via a 

trap-and-emulate. 

 

This design suffers from a non-portable flaw – it assumes 

that 32-bit user mode addresses on Windows do not exceed 

address 0x80000000, an assumption that is outright invalid 

on 64-bit Windows and other operating systems. 

 

The code also does not check for misaligned accesses or 

accesses across a page boundary, which prevents further 

sub-allocation of the guest address space into smaller 

regions. Reducing the granularity of the mapping also 

inversely grows the size of the lookup table. Using 4K 

mapping granularity for example requires 4GB/4K = 

1048576 entries consuming 4 megabytes of host memory. 

 

2.3 Fine-Grained Guest TLB 
 

The approach now used by Gemulator 9 combines the two 

methods – range check using a lookup table of only 2048 

entries - effectively implementing a software-based TLB 

for guest addresses. Each table entry still spans a specific 

guest address range but now holds two values: the XOR 

translation value for that range, and the corresponding base 

guest address of the mapped range. This code sequence is 

used to translate for a guest write access of a 16-bit integer 

using 128-byte granularity: 

 
  mov    edx,ebp 

  shr    edx,bitsSpan ; bitsSpan = 7 

  and    edx,dwIndexMask ; dwIndexMask = 2047 

  mov    ecx,ebp ; guest address 

  add    ecx,cb-1 ; high address of access 

  ; XOR to compare with the cached address 

  xor     ecx,dword ptr [memtlbRW+edx*8] 

  ; prefetch translation XOR value 

  mov   eax,dword ptr [memtlbRW+edx*8+4] 

  test    ecx,dwBaseMask 

  jne     emulate      ; if no match, go emulate 

  xor     eax,ebp ; otherwise translate 

 

Listing 2.3: Guest-to-host mapping using a software TLB  

 

The first XOR operation takes the highest address of the 

access and compares it to the base of the address range 

translated by that entry. When the two numbers are in 

range, all but a few lower bits of the result will be zero. The 

TEST instruction is used to mask out the irrelevant low bits 

and check that the high bits did match. If the result is non-

zero, indicating a TLB miss or a cross-block access, the 

JNE branch is taken to the slow emulation path. The second 

XOR performs the translation as in the page table scheme. 



 

Various block translation granularities and TLB sizes were 

tested for performance and hit rates. The traditional 4K 

granularity was tried and then reduced by factors of two. 

Instrumentation counts showed that hit rates remained good 

for smaller granularities even of 128 bytes, 64 bytes, and 32 

bytes, giving the fine grained TLB mechanism between 

96% and 99% data access hit rate for a mixed set of Atari 

ST and Mac OS 8.1 test runs. 

 

The key to hit rate is not in the size of the translation 

granularity, since data access patterns tend to be scattered, 

but rather the key is to have enough entries in the TLB table 

to handle the scattering of guest memory accesses. A value 

of at least 512 entries was found to provide acceptable 

performance, with 2048 entries giving the best hit rates. 

Beyond 2048 entries, performance improvement for the 

Mac and Atari ST workloads was negligible and merely 

consumed extra host memory. 

 

It was found that certain large memory copy benchmarks 

did poorly with this scheme. This was due to two factors: 

 64K aliasing of source and destination addresses, 

and, 

 Frequent TLB misses for sequential accesses in 

guest memory space. 

 

The 64K aliasing problem occurs because a direct-mapped 

table of 2048 entries spanning 32-byte guest address ranges 

wraps around every 64K of guest address space. The 32-

byte granularity also means that for sequential accesses, 

every 8
th

 32-bit access will “miss”. For these two reasons, a 

block granularity of 128 bytes is used so as to increase the 

aliasing interval to 256K. 

 

Also to better address aliasing, three translation tables are 

used – a TLB for write and read-modify-write guess 

accesses, a TLB for read-only guest accesses, and a TLB 

for code translation and dispatch. This allows guest code to 

execute a block memory copy without suffer from aliasing 

between the program counter, the source of the copy, or the 

destination of the copy. 

 

The code TLB is kept at 32-byte granularity and contains 

extra entries holding a dispatch address for each of the 32 

addresses in the range. When a code TLB entry is 

populated, the 32 dispatch addresses are initialized to point 

to a stub function, similar to how jitting schemes work. 

When an address is dispatched, the stub function calculates 

the true address of the handlers and updates the entry in the 

table. 

 

To handle self-modifying code, when a code TLB entry is 

first populated, the corresponding entry (if present) is 

flushed from the write TLB. Similarly, when a write TLB 

entry misses, it flushes six code TLB entries – the four 

entries corresponding to the 128-byte data range covered by 

the write TLB entry, and one code “guard block” on either 

side are flushed. This serves two purposes: 

 To ensure that an address range of guest memory 

is never cached as both writable data and as 

executable code, such that writes to code space are 

always noted by the virtual machine, and, 

 To permit contiguous code TLB blocks to flow 

into each other, eliminating the need for an address 

check on each guest instruction dispatch. 

 

Keeping code block granularity small along with relatively 

small data granularity means that code execution and data 

writes can be made to the same 4K page of guest memory 

with less chance of false detection of self-modifying code 

and eviction of TLB entries as can happen when using the 

standard 4K page granularity. Legacy 68000 code is known 

to place writeable data near code, as well as using back-

patching and other self-modification to achieve better 

performance. 

 

This three-TLB approach gives the best bounded behavior 

of any of the previous Gemulator implementations. Unlike 

the original MS-DOS implementation, guest ROM and 

video accesses are not penalized for failing a bounds check. 

Unlike the previous Windows implementations, all guest 

memory accesses are verified in software and require no 

“trap-and-emulate” fault handler. 

 

The total host-side memory footprint of the three translation 

tables is: 

 2048 * 8 bytes = 16K for write TLB 

 2048 * 8 bytes = 16K for read TLB 

 2048 * 8 bytes = 16K for code TLB 

 65536*4 = 256K for code dispatch entries 

 

This results in an overall memory footprint of just over 300 

kilobytes for all of the data structures relating to address 

translation and cached instruction dispatch. 

 

For portability to non-x86 host platforms, the 10-instruction 

assembly language sequence was converted to this inlined 

C function to perform the TLB lookup, while the actual 

memory dereference occurs at the call site within each 

guest memory write accessor: 

 



void * pvGuestLogicalWrite( 

  ULONG addr, unsigned cb) 

{ 

  ULONG ispan; 

  ispan = (((addr + cb - 1) >> bitsSpan) 

         & dwIndexMask); 

 

  void *p; 

  p = ((addr ^ vpregs->memtlbRW[ispan*2+1]) 

         - (cb - 1)); 

 

  if (0 == (dwBaseMask & 

         (addr ^ (vpregs->memtlbRW[ispan*2])))) 

  { 

    return p; 

  } 

  return NULL; 

} 

Listing 2.4: Software TLB lookup in C/C++ 

 

This code compiles into almost as efficient a code sequence 

as the original assembly code, except for a spill of ECX 

which the Microsoft Visual Studio compiler generates, 

mandated by the __fastcall calling convention of preserving 

the ECX register. 

 

On a 2.66 GHz Intel Core 2 host computer, the 68000 and 

68040 instruction dispatch rate is about 120 to 170 million 

guest instructions per second, or approximately one guest 

instruction dispatch every 15 to 22 host clock cycles, 

depending on the Atari ST or Mac OS workload. 

 

The aggregate hit rate for the read TLB and write TLB is 

typically over 95% while the hit rate for the code TLB’s 

dispatch entries exceeds 98%. 

 

For example, a workload consisting of booting Mac OS 8.1, 

launching the Speedometer 3.23 benchmarking utility, and 

running a short suite of arithmetic, floating point, and 

graphics benchmarks dispatches a total of 3.216 billion 

guest instructions of which 43 million were not already 

cached, a 98.6% hit rate on instruction dispatch. 

 

That same scenario generates 3.014 billion guest data read 

and write accesses of which 132 million failed to translate, 

for a 95.6% hit rate. The misses include accesses to 

memory mapped I/O that never maps directly to the host. 

 

This latest implementation of Gemulator now has very 

favorable and portable characteristics: 

 

 Runs on the minimal “least common denominator” 

IA32 instruction set of 80386 which performs 

efficient byte swapping without requiring a host to 

support a BSWAP instruction, 

 Short and predictably low-latency code paths, 

 No exceptions are thrown as all guest memory 

accesses are range checked, 

 Less than 1 megabyte of scratch working memory. 

 

These characteristics are applicable not just to running 

68040 guest code, but for more modern byte-swapping 

scenarios such as running PowerPC guest code on x86, or 

running x86 guest code on PowerPC. 

 

The high hit rate of guest instruction dispatch and guest 

memory translation means that the majority of 68000 and 

68040 instructions are simulated using short code paths 

involving translation functions with excellent branch 

prediction characteristics. As is described in the following 

section, improving the branch prediction rates on the host is 

critical. 

 

 

 

 



3.0 Bochs 
 

Bochs is a highly portable open source IA-32 PC emulator 

written purely in C++ that runs on most popular platforms. 

It includes emulation of the CPU engine, common I/O 

devices, and custom BIOS. Bochs can be compiled to 

emulate any modern x86 CPU architecture, including most 

recent Core 2 Duo instruction extensions. Bochs is capable 

of running most operating systems including MS-DOS, 

Linux, Windows 9X/NT/2000/XP and Windows Vista. 

Bochs was written by Kevin Lawton and currently 

maintained by the Bochs open source project
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. Unlike most 

of its competitors like QEMU, Xen or VMware, Bochs 

doesn’t feature a dynamic translation or virtualization 

technologies but uses pure interpretation to emulate the 

CPU.  

 

During our work we took the official Bochs 2.3.5 release 

sources tree and made it run over than three times faster 

using only host independent and portable optimization 

techniques without affecting emulation accuracy.  

 

3.1 Quick introduction to Bochs internals 
 

Our optimizations concentrated in the CPU module of the 

Bochs full system emulator and mainly dealt with the 

primary emulation loop optimization, called the CPU loop. 

According to Bochs 2.3.5 profiling data, the CPU loop took 

around 50% of total emulation time. It turned out that while 

every instruction emulated relatively efficiently, Bochs 

spent a lot of effort for routine operations like fetching, 

decoding and dispatching instructions. 

 

The Bochs 2.3.5 CPU main emulation loop looks very 

similar to that of a physical non-pipelined micro-coded 

CPU like Motorola 68000 or Intel 8086 
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. Every emulated 

instruction passes through six stages during the emulation: 

 

1. At prefetch stage, the instruction pointer 

is checked for fetch permission according 

to current privilege level and code 

segment limits, and host instruction fetch 

pointer is calculated. The prefetch code 

also updates memory page timestamps 

used for self modifying code detection by 

memory accesses. 

 

2. After prefetch stage is complete the 

specific instruction could be looked up in 

Bochs’ internal cache or fetched from the 

memory and decoded.  

 

3. When the emulator has obtained an 

instruction, it can be instrumented on-the-

fly by internal or external debugger or 

instrumentation tools. 

 

4. In case an instruction contains memory 

references, the effective address of an 

instruction is calculated using an indirect 

call to the resolve memory reference 

function. 

 

5. The instruction is executed using an 

indirect call dispatch to the instruction’s 

execution method, stored together with 

instruction decode information. 

 

6. At instruction commit the internal CPU 

EIP state is updated. The previous state is 

used to return to the last executed 

instruction in case of an x86 architectural 

fault occurring during the current 

instruction’s execution. 
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Figure 3.1: Bochs CPU loop state diagram 

 

As emulation speed is bounded by the latency of these six 

stages, shortening any and each of them immediately 

affects emulation performance. 

 



3.2 Taking hardware ideas into emulation – 

using decoded instructions trace cache 
 

Variable length x86 instructions, many different decoding 

templates, three possible operand and address sizes in x86-

64 mode make instruction fetch-decode operations one of 

the heaviest parts of x86 emulation. The Bochs community 

realized this and introduced the decoded instruction cache 

to Bochs 2.0 at the end of 2002. The cache almost doubled 

the emulator performance. 

 

The Pentium 4 processor stores decoded and executed 

instruction blocks into a trace cache
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 containing up to 12K 

of micro-ops. The next time when the execution engine 

needs the same block of instructions, it can be fetched from 

the trace cache instead of being loaded from the memory 

and decoded again. The Pentium 4 trace cache operates in 

two modes. In the “execute mode” the trace is feeding 

micro-ops stored in the trace to the execution engine. This 

is the mode that the trace cache normally runs in. Once a 

trace cache miss occurs the trace cache switches into the 

“build mode”. In this mode the fetch-decode engine fetches 

and decodes x86 instructions from memory and builds a 

micro-ops trace which is stored in the cache. 

 

The trace cache introduced into Bochs 2.3.6 is very similar 

to the Pentium 4 hardware implementation. Bochs 

maintains a decoded instruction trace cache organized as a 

32768-entry direct mapped array with each entry holding a 

trace of up to 16 instructions. The tracing engine stops 

when it detects an x86 instruction able to affect control flow 

of the guest code, such as a branch taken, an undefined 

opcode, a page table invalidation or a write to control 

registers. Speculative tracing through potentially non-taken 

conditional branches is allowed. An early-out technique is 

used to stop trace execution when a taken branch occurs. 

 

When the Bochs CPU loop is executing instructions from 

the trace cache, all front-end overhead of prefetch and 

decode is eliminated. Our experiments with a Windows XP 

guest show most traces to be less than 7 guest instructions 

in length and almost none longer than 16. 

 

 
Figure 3.2: Trace length distribution for Windows XP boot 
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Figure 3.3: Bochs CPU loop state diagram with trace cache 

 

In addition to the over 20% speedup in Bochs emulation, 

the trace cache has great potential for the future. We are 

working on the following techniques which will help to 

double emulation speed again in a short term: 

 

 Complicated x86 instructions could be decoded to 

several simpler micro-ops in the trace cache and 

handled more efficiently by the emulator. 

 



 Compiler optimization techniques can be applied 

to the hot traces in the trace cache. Register move 

elimination, no-op elimination, combining 

memory accesses, replacing instruction dispatch 

handlers, and redundant x86 flags update 

elimination are only a few techniques that can be 

applied to make hot traces run faster. 

 

The software trace cache’s primary problem is direct 

mapped associativity. This can lead to frequent trace cache 

collisions due to aliasing of addresses at 32K and larger 

power-of-two intervals. Hardware caches use multi-way 

associativity to avoid aliasing issues. A software 

implementation of a two- or four-way associative cache and 

LRU management can potentially increase branch 

misprediction during lookup, reducing cache gain to a 

minimum. 

 

What Bochs does instead today is use a 65536-entry table. 

A hash function calculates the trace cache index of guest 

address X using this formula: 

 

 index := (X + (X<<2) + (X>>6)) mod 65536 

 

We found that the best trace cache hashing function 

requires both a left shift and a right shift, providing the non-

linearity so that two blocks of code separated by 

approximately a power-of-two interval will likely not 

conflict.  

 

3.3 Host branch misprediction as biggest cause 

of slow emulation performance 
 

Every pipelined processor features branch prediction logic 

used to predict whether a conditional branch in the 

instruction flow of a program is likely to be taken or not. 

Branch predictors are crucial in today's modern, superscalar 

processors for achieving high performance. 

 

Modern CPU architectures implement a set of sophisticated 

branch predictions algorithms in order to achieve highest 

prediction rate, combining both static and dynamic 

prediction methods. When a branch instruction is executed, 

the branch history is stored inside the processor. Once 

branch history is available, the processor can predict branch 

outcome – whether the branch should be taken and the 

branch target. 

 

The processor uses branch history tables and branch target 

buffers to predict the direction and target of branches based 

on the branch instruction’s address. 

 

The Core micro-architecture branch predictor makes the 

following types of predictions: 

 

 Direct calls and jumps. The jump targets 

are read from the branch target array 

regardless of the taken/not taken 

prediction. 

 

 Indirect calls and jumps. May either be 

predicted as having a monotonic target or 

as having targets that vary in accordance 

with recent program behavior. 

 

 Conditional branches. Predicts branch 

target and whether or not the branch will 

be taken. 

 

 Returns from procedure calls. The branch 

predictor contains a 16-entry return stack 

buffer. It enables accurate prediction for 

RET instructions. 

 

Let’s look closer into at the Bochs 2.3.5 main CPU 

emulation loop. As can be seen the CPU loop alone already 

gives enough work to the branch predictor due to two 

indirect calls right in the heart of the emulation loop, one 

for calculating the effective address of memory accessing 

instructions, and another for dispatching to the instruction 

execution method. In addition to these indirect calls many 

instruction methods contain conditional branches in order to 

distinguish different operand sizes or register/memory 

instruction format. 

 

A typical Bochs instruction handler method: 

 

 
Listing 3.1: A typical Bochs instruction handler 

 

Taking into account 20 cycles Core 2 Duo processor branch 

misprediction penalty 
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 we might see that a cost of every 

branch misprediction during instruction emulation became 

huge. A typical instruction handler is short and simple 

enough such that even a single extra misprediction during 

void BX_CPU_C::SUB_EdGd(bxInstruction_c *i) 

{ 

  Bit32u op2_32, op1_32, diff_32; 

 

  op2_32 = BX_READ_32BIT_REG(i->nnn()); 

 

  if (i->modC0()) { // reg/reg format 

    op1_32 = BX_READ_32BIT_REG(i->rm()); 

    diff_32 = op1_32 - op2_32; 

    BX_WRITE_32BIT_REGZ(i->rm(), diff_32); 

  } 

  else {  // mem/reg format 

    read_RMW_virtual_dword(i->seg(), 

        RMAddr(i), &op1_32); 

    diff_32 = op1_32 - op2_32; 

    Write_RMW_virtual_dword(diff_32); 

  } 

  SET_LAZY_FLAGS_SUB32(op1_32, op2_32, 

        diff_32); 

} 

 

http://en.wikipedia.org/wiki/Conditional_branch
http://en.wikipedia.org/wiki/Instruction_%28computer_science%29
http://en.wikipedia.org/wiki/Superscalar


every instruction execution could slow the emulation down 

by half. 

 

3.3.1 Splitting common opcode handlers into 

many to reduce branch misprediction 
 

All Bochs decoding tables were expanded to distinguish 

between register and memory instruction formats. At 

decode time, it is possible to determine whether an 

instruction is going to access memory during the execution 

stage. All common instruction execution methods were split 

into methods for register-register and register-memory 

cases separately, eliminating a conditional check and 

associated potential branch misprediction during instruction 

execution. The change alone brought a ~15% speedup. 

 

3.3.2. Resolve memory references with no 

branch mispredictions 
 

The x86 architecture has one of the most complicated 

instruction formats of any processor. Not only can almost 

every instruction perform an operation between register and 

memory but the address of the memory access might be 

computed in several ways. 

 

In the most general case the effective address computation 

in the x86 architecture can be expressed by the formula: 

 

 Effective Address := (Base + Index * Scale + 

Displacement) mod 2AddrSize 

 

The arguments of effective address computation (Base, 

Index, Scale and Displacement) can be encoded in many 

different ways using ModRM and S-I-B instruction bytes. 

Every different encoding might introduce a different 

effective address computation method. 

 

For example, when the Index field is not encoded in the 

instruction, it could be interpreted as Index being equal to 

zero in the general effective address (EA) calculation,  or as 

simpler formula which would look like: 

 

 Effective Address := (Base + Displacement) mod 

2AddrSize 

 

Straight forward interpretation of x86 instructions decoding 

forms already results in 6 different EA calculation methods 

only for 32-bit address size: 

 

 Effective Address := Base 

 Effective Address := Displacement 

 Effective Address := (Base + Displacement) mod 232 

 Effective Address := (Base + Index * Scale) mod 232 

 Effective Address := (Index * Scale + Displacement) 

mod 232 

 Effective Address := (Base + Index * Scale + 

Displacement) mod 232 

 
The Bochs 2.3.5 code went even one step ahead and split 

every one of the above methods to eight methods according 

to which one of the eight x86 registers (EAX...EDI) used as 

a Base in the instruction. The heart of the CPU emulation 

loop dispatched to one of thirty EA calculation methods for 

every emulated x86 instruction accessing memory. This 

single point of indirection to so many possible targets 

results in almost a 100% chance for branch misprediction. 

 

It is possible to improve branch prediction of indirect 

branches in two ways – reducing the number of possible 

indirect branch targets, and, replicating the indirect branch 

point around the code. Replicating indirect branches will 

allocate a separate branch target buffer (BTB) entry for 

each replica of the branch. We choose to implement both 

techniques. 

 

As a first step the Bochs instruction decoder was modified 

to generate references to the most general EA calculation 

methods. In 32-bit mode only two EA calculation formulas 

are left: 

 

 Effective Address := (Base + Displacement) mod 232 

 Effective Address := (Base + Index * Scale + 

Displacement) mod 232 

 

where Base or Index fields might be initialized to be a 

special NULL register which always contains a value of 

zero during all the emulation time. 

 

The second step moved the EA calculation method call in 

the main CPU loop and replicated it inside the execution 

methods. With this approach every instruction now has its 

own EA calculation point and is seen as separate indirect 

call entity for host branch prediction hardware. When 

emulating a guest basic block loop, every instruction in the 

basic block might have its own EA form and could still be 

perfectly predicted.  

 

Implementation of these two steps brought ~40% emulation 

speed total due elimination of branch misprediction 

penalties on memory accessing instructions. 

 

3.4. Switching from the PUSHF/POP to 

improved lazy flags approach 
 

One of the few places where Bochs used inline assembly 

code was to accelerate the simulation of x86 EFLAGS 

condition bits. This was a non-portable optimization, and as 

it turned out, no faster than the portable alternative. 

 

Bochs 2.3.7 uses an improved “lazy flags” scheme whereby 

the guest EFLAGS bits are evaluated only as needed. To 



facilitate this, handlers of arithmetic instructions execute 

macros which store away the sign-extended result of the 

operation, and as needed, one or both of the operands going 

into the arithmetic operation. 

 

Our measurements had shown that the greatest number of 

lazy flags evaluations is for the Zero Flag (ZF), mostly for 

Jump Equal and Jump Not Equal conditional branches. The 

lazy flags mechanism is faster because ZF can be derived 

entirely from looking at the cached arithmetic result. If the 

saved result is zero, ZF is set, and vice versa. Checking a 

value for zero is much faster than calling a piece of 

assembly code to execute a PUSHF instruction on the host 

on every emulated arithmetic instruction in order to update 

the emulated EFLAGS register. 

 

Similarly by checking only the top bit of the saved result, 

the Sign Flag (SF) can be evaluated much more quickly 

than the PUSHF way. The Parity Flag (PF) is similarly 

arrived by looking at the lowest 8 bits of the cached result 

and using a 256-byte lookup table to read the parity for 

those 8 bits. 

 

The Carry Flag (CF) is derived by checking the absolute 

magnitude of the first operand and the cached result. For 

example, if an unsigned addition operation caused the result 

to be smaller than the first operand, an arithmetic unsigned 

overflow (i.e. a Carry) occurred. 

 

The more problematic flags to evaluate are Overflow Flag 

(OF) and Adjust Flag (AF). Observe that for any two 

integers A and B that (A + B) equals (A XOR B) when no 

bit positions receive a carry in. The XOR (Exclusive-Or) 

operation has the property that bits are set to 1 in the result 

only if the corresponding bits in the input values are 

different. Therefore when no carries are generated, (A + B) 

XOR (A XOR B) equals zero. If any bit position b is not 

zero, that indicates a carry-in from the next lower bit 

position b-1, thus causing bit b to toggle. 

 

The Adjust Flag indicates a carry-out from the 4
th

 least 

significant bit of the result (bit mask 0x08). A carry out 

from the 4
th

 bit is really the carry-in input to the 5
th

 bit (bit 

mask 0x10). Therefore to derive the Adjust Flag, perform 

an Exclusive-OR of the resulting sum with the two input 

operands, and check bit mask 0x10, as follows: 

 
    AF = ((op1 ^ op2) ^ result) & 0x10; 

 

Overflow uses this trick to check for changes in the high bit 

of the result, which indicates the sign. A signed overflow 

occurs when both input operands are of the same sign and 

yet the result is of the opposite sign. In other words, given 

input A and B with result D, if (A XOR B) is positive, then 

both (A XOR D) and (B XOR D) need to be positive, 

otherwise an overflow has occurred. Written in C: 

 
    OF = ((op1 ^ op2) & (op1 ^ result)) < 0; 

 

Further details of this XOR math are described online
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. 

 

3.5. Benchmarking Bochs 
 

The very stunning demonstration of how the design 

techniques we just described were effective shows up in the 

time it takes Bochs to boot a Windows XP guest on various 

host computers and how that time has dropped significantly 

from Bochs 2.3.5 to Bochs 2.3.6 to Bochs 2.3.7. The table 

below shows the elapsed time in seconds from the moment 

when Bochs starts the Windows XP boot process to the 

moment when Windows XP has rendered its desktop icons, 

Start menu, and task bar. Each Bochs version is compiled as 

a 32-bit Windows application and configured to simulate a 

Pentium 4 guest CPU. 

 
 1000 MHz 

Pentium III 

2533 MHz 

Pentium 4 

2666 MHz 

Core 2 Duo 

Bochs 

2.3.5 

882 595 180 

Bochs 

2.3.6 

609 533 157 

Bochs 

2.3.7 

457 236 81 

 

Table 3.1: Windows XP boot time on different hosts 

 

Booting Windows XP is not a pure test of guest CPU 

throughput due to tens of megabytes of disk I/O and the 

simulation of probing for and initialization of hardware 

devices. Using a Visual C++ compiled CPU-bound test 

program 
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 one can get an idea of the peak throughput of the 

virtual machine’s CPU loop. 

 
#include "windows.h" 

#include "stdio.h" 

 

static int foo(int i) 

{ 

    return(i+1); 

} 

 

int main(void) 

{ 

    long tc = GetTickCount(); 

    int i; 

    int t = 0; 

 

    for(i = 0; i < 100000000; i++) 

        t += foo(i); 

 

    tc = GetTickCount() - tc; 

    printf("tc=%ld, t=%d\n", tc, t, t); 

 

    return t; 

} 
Listing 3.2: Win32 instruction mix test program 

 

The test is compiled as two test executables, T1FAST and 

T1SLOW, which are the optimized and non-optimized 



compiles of this simple test code that incorporates 

arithmetic operations, function calls, and a loop. The 

difference between the two builds is that the optimized 

version (T1FAST) makes more use of x86 guest registers, 

while the unoptimized version (T1SLOW) performs more 

guest memory accesses. 

 

On a modern Intel Core 2 Duo based system, this test code 

achieves similar performance on Bochs as it does on the 

dynamic recompilation based QEMU virtual machine: 

 
Execution Mode T1FAST.EXE time T1SLOW.EXE time 

Native 0.26 0.26 

QEMU 0.9.0 10.5 12 

Bochs 2.3.5 25 31 

Bochs 2.3.7 8 10 

 

Table 3.2: Execution time in seconds of Win32 test program 

 

Instruction count instrumentation shows that T1FAST 

averages about 102 million guest instructions per second 

(MIPS). T1SLOW averages about 87 MIPS due to a greater 

mix of guest instructions that perform a guest-to-host 

memory translation using the software TLB mechanism 

similar to the one used in Gemulator. 

 

This simple benchmark indicates that the average guest 

instruction requires approximately 26 to 30 host clock 

cycles. We tested some even finer grained micro-

benchmarks written in assembly code, specifically breaking 

up the test code into: 

 

 Simple register-register operations such as MOV 

and MOVSX which do not consume or update 

condition flags, 

 Register-register arithmetic operations such as 

ADD, INC, SBB, and shifts which do consume 

and update condition flags, 

 Simple floating point operations such as FMUL, 

 Memory load, store, and read-modify-write 

operations, 

 Indirect function calls using the guest instruction 

CALL EAX, 

 The non-faulting Windows system call 

VirtualProtect(), 

 Inducing page faults to measure round trip time of 

a __try/__except structured exception handler 

 

The micro-benchmarks were performed on Bochs 2.3.5, the 

current Bochs 2.3.7, and on QEMU 0.9.0 on a 2.66 GHz 

Core 2 Duo test system running Windows Vista SP1 as host 

and Windows XP SP2 as guest operating system. 

 

 

 Bochs 2.3.5 Bochs 2.3.7 QEMU 0.9.0 

Register move 

(MOV, MOVSX) 

43 15 6 

Register arithmetic 

(ADD, SBB) 

64 25 6 

Floating point 

multiply 

1054 351 27 

Memory store of 

constant 

99 59 5 

Pairs of memory 

load and store 

operations 

193 98 14 

Non-atomic read-

modify-write 

112 75 10 

Indirect call 

through guest 

EAX register 

190 109 197 

VirtualProtect 

system call 

126952 63476 22593 

Page fault and 

handler 

888666 380857 156823 

Best case peak 

guest execution 

rate in MIPS 

62 177 444 

 

Table 3.3: Approximate host cycle costs of guest operations 

 

This data is representative of over 100 micro-benchmarks, 

and revealed that timings for similar guest instructions 

tended to cluster around the same number of clock cycles. 

For example, the timings for register-to-register move 

operations, whether byte moves, full register moves, or sign 

extended moves, were virtually identical on all four test 

systems. Changing the move to an arithmetic operation and 

thus introducing the overhead of updating guest flags 

similarly affects the clock cycle costs, and is mostly 

independent of the actual arithmetic operation (AND, ADD, 

XOR, SUB, etc) being performed. This is due to the 

relatively fixed and predictable cost of the Bochs lazy flags 

implementation. 

 

Read-modify-write operations are implemented more 

efficiently than separate load and store operations due to the 

fact that a read-modify-write access requires one single 

guest-to-host address translation instead of two. Other 

micro-benchmarks not listed here show that unlike past 

Intel architectures, the Core 2 architecture also natively 

performs a read-modify-write more efficiently than a 

separate load and store sequence, thus allowing QEMU to 

benefit from this in its dynamically recompiled code. 

However, dynamic translation of code and the associated 

code cache management do show up as a higher cost for 

indirect function calls. 



4.0 Proposed x86 ISA Extensions – 

Lightweight Alternatives to Hardware 

Virtualization 
 

The fine-grained software TLB translation code listed in 

section 2.3 is nothing more than a hash table lookup which 

performs a “fuzzy compare” for the purposes of matching a 

range of addresses, and returns a value which is used to 

translate the matched address. This is exactly what TLB 

hardware in CPUs does today. 

It would be of benefit to binary translation engines if the 

TLB functionality was programmatically exposed for 

general purpose use, using a pair of instructions to add a 

value to the hash table, and an instruction to look up a value 

in the hash table. This entire code sequence: 

  mov   edx,ebp 

  shr   edx,bitsSpan 

  and   edx,dwIndexMask 

  mov   ecx,ebp 

  add   ecx,cb-1   

  xor   ecx,dword ptr [memtlbRW+edx*8] 

  mov   eax,dword ptr [memtlbRW+edx*8+4] 

  test  ecx,dwBaseMask 

  jne   emulate 

could be reduced to two instructions, based on the new 

“Hash LookUp” instruction HASHLU which takes a 

destination register (EAX), an r/m32/64 addressing mode 

which resolves to an address range to look up, and a “flags” 

immediate which determines the matching criteria. 

    hashlu eax,dword ptr [ebp],flags 

    jne emulate 

 

Flags could be an imm32 value similar to the mask used in 

the TEST instruction of the original sequence, or an imm8 

value in a more compact representation (4 bits to specify 

alignment requirements in lowest bits, and 4 bits to specify 

block size in bits). The data access size is also keyed as part 

of the lookup, as it represents the span of the address being 

looked up. 

This instruction would potentially reduce the execution 

time of the TLB lookup and translation from about 8 clock 

cycles to potentially one cycle in the branch predicted case. 

To add a range to the hash table, use the new “Hash Add” 

instruction HASHADD, which takes an effective address to 

use as the fuzzy hash key, the second parameter specifies 

the value to hash, and flags again is either an imm32 or 

imm8 value which specifies size of the range being hashed: 

    hashadd dword ptr [ebp],eax,flags 

    jne error 

The instruction sets Zero flag on success, or clears it when 

there is conflict with another range already hashed or due to 

a capacity limitation such that the value could not be added. 

The hardware would internally implement a TLB structure 

of implementation specific size and set associativity, and 

the hash table may or may not be local to the core or shared 

between cores. Internally the entries would be keyed with 

additional bits such as core ID or CR3 value or such and 

could possibly coalesce contiguous ranges into a single 

entry. 

This programmable TLB would have nothing to do 

functionally with the MMU’s TLB. This one exists purely 

for user mode application use to accelerate table lookups 

and range checks in software. As with any hardware cache, 

it is subject to be flushed arbitrarily and return false misses, 

but never false positives. 

 

4.1 Instructions to access EFLAGS efficiently 
 

LAHF has the serious restriction of operating on a partial 

high register (AH) which is not optimal on some 

architectures (writing to it can cause a partial register stall 

as on Pentium III, and accessing it may be slower than AL 

as is the case on Pentium 4 and Athlon). 

 

LAHF also only returns 5 of the 6 arithmetic flags, and does 

not return Overflow flag, or the Direction flag. 

 

PUSHF is too heavyweight, necessitating both a stack 

memory write and stack memory read. 

 

A new instruction is needed, SXF reg32/reg64/r/m32/64 

(Store Extended Flags), which loads a full register with a 

zero extended representation of the 6 arithmetic flags plus 

the Direction flag. The bits are packed down to lowest 7 

bits for easy masking with imm8 constants. For future 

expansion the data value is 32 bits or 64-bits, not just 8 bits. 

 

SXF can find use in virtual machines which use binary 

translation and must save the guest state before calling glue 

code, and in functions which must preserve existing 

EFLAGS state. A complementary instruction LXF (Load 

Extended Flags) would restore the state. 

 

A SXF/LXF sequence should have much lower latency than 

PUSHF/POPF, since it would not cause partial register 

stalls nor cause the serializing behavior of a full EFLAGS 

update as happens with POPF. 



5.0 Conclusions and Further Research 
 

Using two completely different virtual machines we have 

demonstrated techniques that allow a mainstream Core 2 

hosted virtual machine to reach purely interpreted execution 

rates of over 100 MIPS, peaking at about 180 MIPS today. 

 

Our results show that the key to interpreter performance is 

to focus on basic micro-architectural issues such as 

reducing branch mispredictions, using hashing to reduce 

trace cache collisions, and minimizing memory footprint. 

Counter-intuitive to conventional wisdom, it shows that it is 

irrelevant whether the virtual machine CPU interpreter is 

implemented in assembly language or C++, whether the 

guest and host memory endianness matches or not, or even 

whether one is running 1990’s Macintosh code or more 

current Windows code. This is indicated by the fact that 

both Bochs and Gemulator exhibit nearly identical average 

and peak execution rates despite the very different guest 

environments which they are simulating. 

 

This suggests that C or C++ can implement a portable 

virtual machine framework achieving performance up to 

hundreds of MIPS, independent of guest and host CPU 

architectures. Compared to an x86-to-x86 dynamic 

recompilation engine, the cost of portability today stands at 

less than three-fold performance slowdown. In some guest 

code sequences, the portable interpreted implementation is 

already faster. This further suggests that specialized x86 

tracing frameworks such as Pin or Nirvana which need to 

minimize their impact on the guest environment they are 

tracing could be implemented using such an interpreted 

virtual machine framework. 

 

To continue our research into the reduction of unpredictable 

branching we intend to explore macro-op fusion of guest 

code to reduce the total number of dispatches, as well as 

continuing to split out even more special cases of common 

opcode handlers. Either of these techniques would result in 

further elimination of explicit calls of EA calculation 

methods. 

 

To confirm portability and performance on non-x86 host 

systems, we plan to benchmark Bochs on a PowerPC-based 

Macintosh G5 as well on Fedora Linux running on Sony 

Playstation 3. 

 

We plan to benchmark flash drive based devices such as the 

ASUS EEE sub-notebook and Windows Mobile phones. An 

interesting area to explore on such memory constrained 

devices is to measure whether using fine-grained memory 

translation and per-block allocation of guest memory on the 

host can permit a virtual machine to require far less 

memory than the usual approach of allocating the entire 

guest RAM block up front whether it ever gets accessed or 

not. 

 

This fine-grained approach could effectively yield a 

“negative footprint” virtual machine, allowing the 

virtualization of a guest operating system which otherwise 

could not even be natively booted on a memory constrained 

device. This in theory could allow for running Windows XP 

on a cell phone, or running Windows Vista on the 256-

megabyte Sony Playstation 3 and on older PC systems. 

 

Finally, using our proposed ISA extensions we believe that 

the performance gap between interpretation and direct 

execution can be minimized by eliminating much of the 

repeated computation involved in guest-to-host address 

translation and computation of guest conditional flags state. 

Such ISA extensions would be simpler to implement and 

verify than existing heavyweight hardware virtualization, 

making them more suitable for use on low-power devices 

where lower gate count is preferable. 
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