
Darek Mihocka, Emulators.com

Stanislav Shwartsman, Intel Corp.

June 21 2008



Agenda

Jun-21-2008 AMAS-BT 2008

• Introduction

• Gemulator

• Bochs

• Proposed ISA Extensions

• Conclusions and Future Work

• Q & A

2



Introduction
 A virtual machine is an indirection engine which

redirects code and data inside of the “guest” sandbox.

 Three ways of virtual machine implementation:
 Virtualization, direct execution (VMware, Virtual PC, Xen)

 Dynamic (just-in-time) translation (QEMU)

 Emulation (Bochs, Gemulator)

 Recent trend in x86 virtualization products to rely on
hardware VT for hypervisor implementation on the
“host” – requires use of very recent microprocessors.

 Other techniques like “ring compression” and dynamic
recompilation – still very x86 or host specific.

Jun-21-2008 AMAS-BT 2008 3



A Portable VM

 A portable VM cannot rely on specific model of host

CPU, or advanced features of CPU such as MMU.

 Interpretation based techniques can be used to

implement portable VM, even using high level

languages – C or C++.

 But we show that efficiently written emulation engine

can be nearly as fast as a virtual machine

implemented using dynamic translation.

 We choose portability over maximizing peak

performance!

Jun-21-2008 AMAS-BT 2008 4



Benefits of Portable VM

 Instrumentation of memory accesses, flow

control, and context switches becomes

easier and performance efficient.

 Allows for simulation of future ISA

extensions.

 Bounds memory overhead for memory

constrained hosts.

Jun-21-2008 AMAS-BT 2008 5



Portability Means Isolation

 Most virtual machines today do NOT

isolate the guest virtual machine from the

host CPU due to use of direct execution or

jitting.

 Information such as CPUID bits or ISA

capability leaks through to guest.

 Only a truly portable virtual machine

isolates everything, providing complete

transparency.*

Jun-21-2008 AMAS-BT 2008 6



Overview of Presentation

 A look at implementation of Gemulator – a 68040

Macintosh emulator for x86

 Efficient byte swapping

 Efficient guest-to-host address translation

 A look at implementation of Bochs – a portable

open source x86 PC emulator

 Caching of decoded instructions

 Lazy flags

 Proposed ISA extensions based on commonalities

in Bochs and Gemulator

 Conclusions and future work

Jun-21-2008 AMAS-BT 2008 7



Gemulator Byte Swap

 Cannot rely on BSWAP functionality in

C/C++ or for large data types.

 68040 address space is thus stored

backwards in x86 host address space.

 In most trivial implementation, entire

68000/68040 address space is allocated as

one memory block.

 Guest address is negated to calculate the

host access address.

Jun-21-2008 AMAS-BT 2008 8



Trivial Byte Swap Math

 Guest block of size M is allocated at host 

address B.

 Guest address G maps to host address:

H = B + M – 1 – G

 In general, guest access of N bytes maps as:

H = B + M – N – G

 Works for unaligned accesses!

 If B and M are large powers of 2, can use 

constant K: H = G XOR K

Jun-21-2008 AMAS-BT 2008 9



Page Based XOR Translation

 Using XOR for guest-to-host mapping,

guest address space can be allocated in

smaller discontiguous blocks.

 Each such block has a unique XOR

constant.

 These XOR values may be stored in an

array – one entry per guest page.

Jun-21-2008 AMAS-BT 2008 10



Software TLB using XOR

 Storing XOR values as small lookup table

is software equivalent of a Translation

Lookaside Buffer (TLB).

 96%+ hit rate using 2048-entry table.

 Separating tables for code and data access

catches guest self-mod code.

 Mapping granularity need not be 4K.

 Mapping function currently implemented

using 10 x86 instructions, one branch!

Jun-21-2008 AMAS-BT 2008 11



Bochs Basics

 Highly portable open source IA32 PC

emulator written purely in C++. Emulates x86

CPU and common I/O devices.

 Similar to QEMU, Xen, and VMware

Workstation.

 But, does not use jitting or hardware

virtualization.

 X86 Execution is purely interpreted.

Jun-21-2008 AMAS-BT 2008 12



Bochs Trace Cache

 Bochs 2.3.5 spent >50% of time in fetch-decode-

dispatch CPU loop.

 Decoded instructions cached in simple direct mapped

i-cache when single i-cache entry contains single

decoded instruction.

 Every instruction should pay a price of i-cache lookup

But why not cache a decoded basic

block at once?

Jun-21-2008 AMAS-BT 2008 13



Bochs Trace Cache

• 32K entries associated into

direct map cache.

• Use fine tuned hash

function to index cache

entries.

• Trace length is virtually

unlimited, traces allocated

from static memory pool

while optimizing for host

data cache locality.

Jun-21-2008 AMAS-BT 2008 14

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31



Reducing Misprediction

 A mispredicted branch can cost over 20 host clock

cycles on modern CPUs.

 To reduce misprediction, Bochs tries to eliminate

“if/else” statements that host hardware will not be

able to predict, using techniques such as:

 Replicating instruction execution handlers for register and

memory forms of an instruction.

 Moving effective address calculation out of main CPU loop

and into the instruction handlers.

 Merging similar effective address calculation code into

common functions by using more general form of

calculation.

Jun-21-2008 AMAS-BT 2008 15



Emulating EFLAGS in C++

 Most virtual machines resort to using inline

PUSHF/POP or LAHF instructions to capture

arithmetic flags – not portable!

 Bochs (and Gemulator) use lazy flags

approach and calculate arithmetic flags values

only when required, using only basic integer

operations.

 Flags can be derived by caching the sign-

extended values of input operands and the

result.

Jun-21-2008 AMAS-BT 2008 16



Lazy Flags

 Based strictly on the cached result, can derive 

the ZF (Zero Flag), SF (Sign Flag), and PF 

(Parity Flag):

 ZF = (result == 0);

 SF = (result < 0);

 PF = parity_lookup[result & 0xFF];

 This is faster than using inline ASM executing 

a PUSHF/POP or LAHF!

Jun-21-2008 AMAS-BT 2008 17



Lazy Flags II

 CF (Carry Flag), OF (Overflow Flag), and AF

(Adjust Flag) are all derived from carry-out bits

from different bit positions.

 AF is carry out of 4th LSB, thus:

 AF = ((op1 ^ op2) ^ result) & 0x10

 OF and CF are based on sign changes

between inputs and result:

 OF = ((op1 ^ op2) & (op1 ^ result)) < 0

 CF = (result ^ (~(op1 ^ op2) & (op1 ^ result))) < 0

Jun-21-2008 AMAS-BT 2008 18



Bochs Benchmarks

 Time (in seconds) to boot Windows XP

guest using three different Intel host

architectures.

 2x improvement from Bochs 2.3.5 by

using the techniques just described!

Jun-21-2008 AMAS-BT 2008 19

1000 MHz 

Pentium III 

2533 MHz 

Pentium 4 

2666 MHz 

Core 2 Duo

Bochs 2.3.5 882 595 180 

Bochs 2.3.6 609 533 157 

Bochs 2.3.7 457 236 81 



Proposed ISA Extensions

 In place of existing MMU, segmentation,

and VT, we suggest some simple ISA

extensions instead.

 The ISA extensions could be targeted as

C++ compiler intrinisics or by jitters to

achieve faster speeds for interpreters and

binary translated code.

 ISA extensions aim at two goals – speed

up guest-to-host mapping, and flags.

Jun-21-2008 AMAS-BT 2008 20



Accelerating Software TLB

 Matching an entry in TLB involves a hashing operation
and key match to retrieve correct value.

 Suggest a HASHLU (Hash Lookup) instruction of the 
form:

hashlu eax, dword ptr [ebp], flags
jne no_match

 HASHLU is essentially a programmatic use of the
hardware TLB.

 Propose an instruction SAFL (Store Arithmetic Flags)
which stores just the arithmetic flags to a register or
memory.

 Could be implemented as a complier intrinsic or
automatically generated by compilers to accelerate
interpreters and accelerate binary translated code.

Jun-21-2008 AMAS-BT 2008 21



Conclusions
 C++ based interpreter can achieve 100 MIPS

execution speed today.

 Byte swapping, memory translation, arithmetic flags,

and instruction dispatch can be implemented

efficiently and in a portable way in C++.

 Benchmarks show that efficient emulation can be

within 2x speed of dynamic translation

implementations.

 Interpreter can do much of the work on a jitter –

caching decoded instruction, constructing traces, etc.

– but simply stops short of emitting new host code.

 This technique is known as a “threaded interpreter”.

Jun-21-2008 AMAS-BT 2008 22



Future Work

 Further research to try to achieve 200 MIPS.

 Porting Bochs and Gemulator to Sony

Playstation 3 and PowerMac G5.

 Using Bochs as a general purpose

instrumentation tool similar to DynamoRIO,

Pin, and Nirvana, but possibly with less

overhead.

 Using fine-grained mapping to efficiently

compact a large guest into a small host – for

example: Vista on an ASUS EEE or PS/3.

Jun-21-2008 AMAS-BT 2008 23



Q&A

Jun-21-2008 AMAS-BT 2008 24



Backup Slides

Jun-21-2008 AMAS-BT 2008 25



Properties of Portable VM

 Portable across x86 and non-x86 hosts.

 Bounds memory overhead for memory

constrained hosts.

 Bounds worst-case performance for predictable

execution speed.

 Efficiently dispatches guest code instructions,

regardless of host ISA.

 Efficiently handlers data accesses, privilege
checks, and byte swap issues.

Jun-21-2008 AMAS-BT 2008 26



Interpretation II

 Expensive operations such as division,
interlocked memory operations, disk I/O and
etc. really do not benefit from jitting or direct
execution anyway.

 Jitting may add megabytes of extra memory
overhead to the host, decreasing L1 and L2
hit rates.

 An interpreter already does the work of
decoding an instruction. Adding
instrumentation is minimal extra work.

Jun-21-2008 AMAS-BT 2008 27



Bochs Internals

 Mimics everything the real CPU does

Emulate CPU fetch-decode-execute flow

- Fetch:

- At prefetch stage, check permissions and update page

timestamps for self-mod code detection.

- Fetch x86 opcode.

- Decode

- Decode x86 instruction into internal representation.

- Execute

- Calculate effective address of memory operands.

- Indirect call to instruction execution method.

- Update the register state and flags as necessary

Jun-21-2008 AMAS-BT 2008 28



Bochs CPU Loop

Jun-21-2008 AMAS-BT 2008 29

HANDLE ASYNCHRONOUS

EXTERNAL EVENTS

PREFETCH

Instruction

cache

lookup

FETCH AND DECODE

INSTRUCTION

RESOLVE MEMORY REFERENCES

(ADDRESS GENERATION UNIT)

ACCESS MEMORY AND

EXECUTE

COMMIT

MISS

HIT

INSTRUMENT INSTRUCTION

(when needed)

HANDLE ASYNCHRONOUS

EXTERNAL EVENTS

PREFETCH

Trace

cache

lookup

RESOLVE MEMORY REFERENCES

(ADDRESS GENERATION UNIT)

ACCESS MEMORY AND

EXECUTE

COMMIT

ADVANCE TO NEXT INSTRUCTION

MISS

HIT

INSTRUMENT INSTRUCTION

(when needed)

FETCH AND DECODE

INSTRUCTION

End of the 

trace?

HANDLE ASYNCHRONOUS

EXTERNAL EVENTS

Store 

trace

COMMIT TRACE

NOYES



Gemulator Basics

 68000/68040 interpreter for MS-DOS and

Windows which emulates Apple Macintosh.

 Needs to handle 68040-to-x86 byte swap for all

access sizes.

 Needs to handle mapping of up to 1GB of 68040

RAM to possibly fragmented host address space.

 Detect and handle self-modifying 68000 code,

very common in older Macintosh applications.

 To run on MS-DOS, must not generate any host

exceptions or faults!

Jun-21-2008 AMAS-BT 2008 30


